1. Rajus, V. S., J. Boi-Ukeme, R. S. Jiresal, et al. "Measured data reliability for building performance and maintenance," IEEE Instrumentation & Measurement Magazine, Vol. 25, No. 1, 55-61, Feb. 2022.
doi:10.1109/MIM.2022.9693445 Google Scholar
2. Mahmoud, A., H. Sadruddin, P. Coser, and M. Atia, "Integration of wearable sensors measurements for indoor pedestrian tracking," IEEE Instrumentation & Measurement Magazine, Vol. 25, No. 1, 46-54, Feb. 2022.
doi:10.1109/MIM.2022.9693454 Google Scholar
3. Chen, S., J. Wang, L. Zhang, et al. "When internet of things meets e-health: An indoor temperature monitoring and control approach," IEEE Internet of Things Magazine, Vol. 4, No. 3, 12-16, Sep. 2021.
doi:10.1109/IOTM.0011.2000054 Google Scholar
4. Sotres, P., J. R. Santana, L. Sanchez, J. Lanza, and L. Munoz, "Practical lessons from the deployment and management of a smart city internet-of-things infrastructure: The SmartSantander testbed case," IEEE Access, Vol. 5, 14309-14322, 2017.
doi:10.1109/ACCESS.2017.2723659 Google Scholar
5. Yu, B.-Y., Z.-H. Wang, L. Ju, et al. "Flexible and wearable hybrid RF and solar energy harvesting system," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 3, 2223-2233, Mar. 2022.
doi:10.1109/TAP.2021.3118814 Google Scholar
6. Tan, T., Z. Yan, H. Zou, K. Ma, F. Liu, L. Zhao, Z. Peng, and W. Zhang, "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Vol. 254, 2019. Google Scholar
7. Ferreira, D., L. Sismeiro, A. Ferreira, R. F. S. Caldeirinha, T. R. Fernandes, and I. Cuinas, "Hybrid FSS and rectenna design for wireless power harvesting," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 2038-2042, May 2016.
doi:10.1109/TAP.2016.2536168 Google Scholar
8. Pandey, R., A. K. Shankhwar, and A. Singh, "Design and analysis of rectenna at 2.42 GHz for Wi-Fi energy harvesting," Progress In Electromagnetics Research C, Vol. 117, 89-98, 2021.
doi:10.2528/PIERC21100409 Google Scholar
9. Pandey, R., A. K. Shankhwar, and A. Singh, "An improved conversion efficiency of 1.975 to 4.744 GHz rectenna for wireless sensor applications," Progress In Electromagnetics Research C, Vol. 109, 217-225, 2021.
doi:10.2528/PIERC20121102 Google Scholar
10. Chuma, E. L., Y. Iano, M. S. Costa, L. T. Manera, and L. L. B. Roger, "A compact-integrated recon gurable rectenna array for RF power harvesting with a practical physical structure," Progress In Electromagnetics Research M, Vol. 70, 89-98, 2018. Google Scholar
11. Shin, J., M. Seo, J. Choi, J. So, and C. Cheon, "A compact and wideband circularly polarized rectenna with high efficiency at X-band," Progress In Electromagnetics Research, Vol. 145, 163-173, 2014.
doi:10.2528/PIER14012803 Google Scholar
12. Zhekov, S. S., O. Franek, and G. F. Pedersen, "Dielectric properties of common building materials for ultrawideband propagation studies [measurements corner]," IEEE Antennas and Propagation Magazine, Vol. 62, No. 1, 72-81, Feb. 2020.
doi:10.1109/MAP.2019.2955680 Google Scholar
13. Baker-Jarvis, J., M. Janezic, B. Riddle, R. Johnk, C. Holloway, R. Geyer, and C. Grosvenor, "Measuring the permittivity and permeability of lossy materials: Solids, liquids, metals, and negative-index materials," Technical Note (NIST TN), National Institute of Standards and Technology, Gaithersburg, MD, 2005. Google Scholar
14. Cuinas, I. and M. G. Sanchez, "Permittivity and conductivity measurements of building materials at 5.8 GHz and 41.5 GHz," Wireless Personal Communications, Vol. 20, 93-100, 2002.
doi:10.1023/A:1013886209664 Google Scholar
15. Cuinas, I., et al., "Frequency dependence of dielectric constant of construction materials in microwave and millimeter-wave bands," Microwave and Optical Technology Letters, Vol. 30, 123-124, 2001.
doi:10.1002/mop.1238 Google Scholar
16. Antoine, R., "Dielectric permittivity of concrete between 50 MHz and 1 GHz and GPR measurements for building materials evaluation," Journal of Applied Geophysics, Vol. 40, 89-94, 1998. Google Scholar
17. Oliveira, J. G. D., N. Junior, M. G. Pinto, et al. "A new planar microwave sensor for building materials complex permittivity characterization," Sensors, Vol. 20, No. 21, 6328, 2020.
doi:10.3390/s20216328 Google Scholar
18. Nepa, P. and H. Rogier, "Wearable antennas for off-body radio links at VHF and UHF bands: Challenges, the state of the art, and future trends below 1 GHz," IEEE Antennas and Propagation Magazine, Vol. 57, No. 5, 30-52, Oct. 2015.
doi:10.1109/MAP.2015.2472374 Google Scholar
19. Del-Rio-Ruiz, R., J. Lopez-Garde, J. Legarda, S. Lemey, O. Caytan, and H. Rogier, "Reliable lab-scale construction process for electromagnetically coupled textile microstrip patch antennas for the 2.45 GHz ISM band," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 153-157, Jan. 2020.
doi:10.1109/LAWP.2019.2956238 Google Scholar
20. Sipila, E., J. Virkki, L. Sydanheimo, and L. Ukkonen, "Experimental study on brush-painted metallic nanoparticle UHF RFID tags on wood substrates," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 301-304, 2015.
doi:10.1109/LAWP.2014.2362966 Google Scholar
21. Verma, A., C. Fumeaux, V. T. Truong, and B. D. Bates, "A 2 GHz Polypyrrole microstrip patch antenna on Plexiglas substrate," 2009 Asia Pacific Microwave Conference, 36-39, 2009.
doi:10.1109/APMC.2009.5385500 Google Scholar
22. Youn, S., D. Jang, N. K. Kong, and H. Choo, "Design of a printed 5G monopole antenna with periodic patch director on the laminated window glass," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 2, 297-301, 2022.
doi:10.1109/LAWP.2021.3128648 Google Scholar
23. Multi-Plastics, , , http://multi-plastics.com/ (accessed Oct. 16, 2022).
24. Novacentrix, , Metalon conductive inks for flexible printed electronics, https://www.novacentrix.com/ (accessed Oct. 16, 2022).
25. Vandelle, E., D. H. N. Bui, T. Vuong, G. Ardila, K. Wu, and S. Hemour, "Harvesting ambient RF energy efficiently with optimal angular coverage," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1862-1873, Mar. 2019.
doi:10.1109/TAP.2018.2888957 Google Scholar
26. Bruker "High-value life science and material research and diagnostics solutions,", https://www.bruker.com/en.html (accessed Oct. 16, 2022). Google Scholar
27. Testing Machines Inc., Industrial Physics, Materials testing, https://industrialphysics.com/brands/testing-machines-inc/ (accessed Oct. 16, 2022).
28. Signatone, , , https://signatone.com/ (Accessed Oct. 16, 2022).
29. Chen, E. and S. Y. Chou, "Characteristics of coplanar transmission lines on multilayer substrates: Modeling and experiments," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 6, 939-945, Jun. 1997.
doi:10.1109/22.588606 Google Scholar
30. Goverdhanam, K., R. N. Simons, and L. P. B. Katehi, "Coplanar stripline components for high-frequency applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 10, 1725-1729, Oct. 1997.
doi:10.1109/22.641719 Google Scholar
31. Antonio Estrada, J., E. Kwiatkowski, A. Lopez-Yela, et al. "RF-harvesting tightly coupled rectenna array tee-shirt with greater than octave bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 9, 3908-3919, Sept. 2020.
doi:10.1109/TMTT.2020.2988688 Google Scholar