Vol. 126
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-11-03
An Improved Low Switching Frequency Three-Vector Model Predictive Torque Control Strategy for Permanent Magnet Synchronous Motors
By
Progress In Electromagnetics Research C, Vol. 126, 105-123, 2022
Abstract
In order to further reduce the computational complexity as well as the average switching frequency of the inverter for model predictive torque control (MPTC), an improved MPTC control strategy for a three-vector low switching frequency based permanent magnet synchronous motor is proposed. Firstly, an analysis is conducted on the combined effect of the torque and magnetic chain based on the three voltage vectors, based on which the vector combinations are matched to form an offline optimized switching table, and then the three voltage vector combinations are selected from the offline optimized switching table according to the torque control requirements in order to reduce the amount of system calculations. Then, on this basis, a hysteresis loop technique for direct torque control is introduced to reduce the average switching frequency of the inverter. An improved MPTC control strategy with fuzzy variable hysteresis loop width is further proposed to fuzzy control the dynamic output hysteresis loop width scaling factor according to the motor operating state. Experimental results show that the improved MPTC control strategy with fuzzy variable hysteresis loop width results in optimal combined average switching frequency and current harmonics with reduced computational effort.
Citation
Qianghui Xiao Zhe Li Yang Zhang Bing Luo Tingting Wang , "An Improved Low Switching Frequency Three-Vector Model Predictive Torque Control Strategy for Permanent Magnet Synchronous Motors," Progress In Electromagnetics Research C, Vol. 126, 105-123, 2022.
doi:10.2528/PIERC22090502
http://www.jpier.org/PIERC/pier.php?paper=22090502
References

1. Tong, W., S. Dai, S. Wu, and R. Tang, "Performance comparison between an amorphous metal PMSM and a silicon steel PMSM," Performance comparison between an amorphous metal PMSM and a silicon steel PMSM, Vol. 55, No. 6, 1-5, June 2019, Art No. 8102705, doi: 10.1109/TMAG.2019.2900531.

2. Sun, X., Z. Shi, G. Lei, Y. Guo, and J. Zhu, "Analysis and design optimization of a permanent magnet synchronous motor for a campus patrol electric vehicle," IEEE Transactions on Vehicular Technology, Vol. 68, No. 11, 10535-10544, Nov. 2019, doi: 10.1109/TVT.2019.2939794.
doi:10.1109/TVT.2019.2939794

3. Siami, I. M., D. A. Khaburi, A. Abbaszadeh, and J. Rodríguez, "Robustness improvement of predictive current control using prediction error correction for permanent-magnet synchronous machines," IEEE Transactions on Industrial Electronics, Vol. 63, No. 6, 3458-3466, June 2016, doi: 10.1109/TIE.2016.2521734.
doi:10.1109/TIE.2016.2521734

4. Zhao, G., J. Feng, and Q. Sun, "The research of optimized torque control algorithm for PMSM based on grey prediction model," 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 335-340, 2009, doi: 10.1109/FSKD.2009.588.
doi:10.1109/FSKD.2009.588

5. Chen, W. and D. Sun, "simplified robust model predictive flux control of open-winding PMSM based on ESO," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 1-6, 2019, doi: 10.1109/ICEMS.2019.8921676.

6. Zhang, X., K. Yan, and M. Cheng, "Two-stage series model predictive torque control for PMSM drives," IEEE Transactions on Power Electronics, Vol. 36, No. 11, 12910-12918, Nov. 2021, doi: 10.1109/TPEL.2021.3075711.
doi:10.1109/TPEL.2021.3075711

7. Ji, J., R. Xue, W. Zhao, T. Tao, and L. Huang, "Simplified three-vector-based model predictive thrust force control with cascaded optimization process for a double-side linear vernier permanent magnet motor," IEEE Transactions on Power Electronics, Vol. 35, No. 10, 10681-10689, Oct. 2020, doi: 10.1109/TPEL.2020.2976901.
doi:10.1109/TPEL.2020.2976901

8. Sun, X., et al., "MPTC for PMSMs of EVs With multi-motor driven system considering optimal energy allocation," IEEE Transactions on Magnetics, Vol. 55, No. 7, 1-6, July 2019, Art No. 8104306, doi: 10.1109/TMAG.2019.2904289.
doi:10.1109/TMAG.2019.2904289

9. Chen, L., H. Xu, X. Sun, and Y. Cai, "Three-vector-based model predictive torque control for a permanent magnet synchronous motor of EVs," IEEE Transactions on Transportation Electrification, Vol. 7, No. 3, 1454-1465, Sept. 2021, doi: 10.1109/TTE.2021.3053256.
doi:10.1109/TTE.2021.3053256

10. Luo, Y. and C. Liu, "A flux constrained predictive control for a six-phase PMSM motor with lower complexity," IEEE Transactions on Industrial Electronics, Vol. 66, No. 7, 5081-5093, 2019.
doi:10.1109/TIE.2018.2868301

11. Huang, W., et al., "Model predictive thrust force control of a linear fluxswitching permanent magnet machine with voltage vectors selection and synthesis," IEEE Transactions on Industrial Electronics, Vol. 66, No. 6, 4956-4967, 2019.
doi:10.1109/TIE.2018.2835381

12. Lim, C. S., E. Levi, M. Jones, N. Abdul Rahim, and W. P. Hew, "Experimental evaluation of model predictive current control of a five-phase induction motor using all switching states," 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), LS1c.4-1-LS1c.4-7, 2012, doi: 10.1109/EPEPEMC.2012.6397394.

13. Zhang, Y., B. Xia, and H. Yang, "Performance evaluation of an improved model predictive control with field oriented control as a benchmark," IET Electric Power Applications, Vol. 11, No. 5, 677-687, 2017.
doi:10.1049/iet-epa.2015.0614

14. Ang, Y. L., et al., "Deadbeat modelpredictive torque control with discrete space-vector modulation for PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 64, No. 5, 3537-3547, 2017.
doi:10.1109/TIE.2017.2652338

15. Nasr, A., C. Gu, G. Buticchi, S. Bozhko, and C. Gerada, "A low-complexity modulated model pre-dictive torque and flux control strategy for PMSM drives without weighting factor," IEEE Journal of Emerging and Selected Topics in Power Electronics, doi: 10.1109/JESTPE.2022.3152652.

16. Guo, T., Z. Wang, H. Zhang, X. Jiang, and L. Tian, "Cascaded predictive speed control optimization method based on fuzzy controller," 2021 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), 328-335, 2021, doi: 10.1109/PRECEDE51386.2021.9680980.
doi:10.1109/PRECEDE51386.2021.9680980

17. Xiang, C., X. Zhang, Z. Li, L. Zhang, and S. Cheng, "Model predict torque control of induction motor based on the DTC switching table," 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), 1348-1352, 2020, doi: 10.1109/ICIEA48937.2020.9248310.
doi:10.1109/ICIEA48937.2020.9248310

18. Hou, L., J. Ma, and W. Wang, "Sliding mode predictive current control of permanent magnet synchronous motor with cascaded variable rate sliding mode speed controller," IEEE Access, Vol. 10, 33992-34002, 2022, doi: 10.1109/ACCESS.2022.3161629.
doi:10.1109/ACCESS.2022.3161629

19. Dan, H., P. Zeng, W. Xiong, M. Wen, M. Su, and M. Rivera, "Model predictive control-based direct torque control for matrix converter-fed induction motor with reduced torque ripple," CES Transactions on Electrical Machines and Systems, Vol. 5, No. 2, 90-99, June 2021, doi: 10.30941/CESTEMS.2021.00012.
doi:10.30941/CESTEMS.2021.00012

20. Geyer, T., Model Predictive Control of High Power Converters and Industrial Drives, John Wiley & Sons, Inc., Chichester, 2016.
doi:10.1002/9781119010883

21. Kim, H., J. Han, Y. Lee, J. Song, and K. Lee, "Torque predictive control of permanent-magnet synchronous motor using duty ratio prediction," 2013 IEEE International Symposium on Industrial Electronics, 1-5, 2013, doi: 10.1109/ISIE.2013.6563664.

22. Dragičvić, T. and M. Novak, "Weighting factor design in model predictive control of power electronic converters: An artificial neural network approach," IEEE Transactions on Industrial Electronics, Vol. 66, No. 11, 8870-8880, Nov. 2019, doi: 10.1109/TIE.2018.2875660.
doi:10.1109/TIE.2018.2875660