1. Tong, W., S. Dai, S. Wu, and R. Tang, "Performance comparison between an amorphous metal PMSM and a silicon steel PMSM," Performance comparison between an amorphous metal PMSM and a silicon steel PMSM, Vol. 55, No. 6, 1-5, June 2019, Art No. 8102705, doi: 10.1109/TMAG.2019.2900531. Google Scholar
2. Sun, X., Z. Shi, G. Lei, Y. Guo, and J. Zhu, "Analysis and design optimization of a permanent magnet synchronous motor for a campus patrol electric vehicle," IEEE Transactions on Vehicular Technology, Vol. 68, No. 11, 10535-10544, Nov. 2019, doi: 10.1109/TVT.2019.2939794.
doi:10.1109/TVT.2019.2939794 Google Scholar
3. Siami, I. M., D. A. Khaburi, A. Abbaszadeh, and J. Rodríguez, "Robustness improvement of predictive current control using prediction error correction for permanent-magnet synchronous machines," IEEE Transactions on Industrial Electronics, Vol. 63, No. 6, 3458-3466, June 2016, doi: 10.1109/TIE.2016.2521734.
doi:10.1109/TIE.2016.2521734 Google Scholar
4. Zhao, G., J. Feng, and Q. Sun, "The research of optimized torque control algorithm for PMSM based on grey prediction model," 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 335-340, 2009, doi: 10.1109/FSKD.2009.588.
doi:10.1109/FSKD.2009.588 Google Scholar
5. Chen, W. and D. Sun, "simplified robust model predictive flux control of open-winding PMSM based on ESO," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 1-6, 2019, doi: 10.1109/ICEMS.2019.8921676. Google Scholar
6. Zhang, X., K. Yan, and M. Cheng, "Two-stage series model predictive torque control for PMSM drives," IEEE Transactions on Power Electronics, Vol. 36, No. 11, 12910-12918, Nov. 2021, doi: 10.1109/TPEL.2021.3075711.
doi:10.1109/TPEL.2021.3075711 Google Scholar
7. Ji, J., R. Xue, W. Zhao, T. Tao, and L. Huang, "Simplified three-vector-based model predictive thrust force control with cascaded optimization process for a double-side linear vernier permanent magnet motor," IEEE Transactions on Power Electronics, Vol. 35, No. 10, 10681-10689, Oct. 2020, doi: 10.1109/TPEL.2020.2976901.
doi:10.1109/TPEL.2020.2976901 Google Scholar
8. Sun, X., et al. "MPTC for PMSMs of EVs With multi-motor driven system considering optimal energy allocation," IEEE Transactions on Magnetics, Vol. 55, No. 7, 1-6, July 2019, Art No. 8104306, doi: 10.1109/TMAG.2019.2904289.
doi:10.1109/TMAG.2019.2904289 Google Scholar
9. Chen, L., H. Xu, X. Sun, and Y. Cai, "Three-vector-based model predictive torque control for a permanent magnet synchronous motor of EVs," IEEE Transactions on Transportation Electrification, Vol. 7, No. 3, 1454-1465, Sept. 2021, doi: 10.1109/TTE.2021.3053256.
doi:10.1109/TTE.2021.3053256 Google Scholar
10. Luo, Y. and C. Liu, "A flux constrained predictive control for a six-phase PMSM motor with lower complexity," IEEE Transactions on Industrial Electronics, Vol. 66, No. 7, 5081-5093, 2019.
doi:10.1109/TIE.2018.2868301 Google Scholar
11. Huang, W., W. Hua, F. Yin, et al. "Model predictive thrust force control of a linear fluxswitching permanent magnet machine with voltage vectors selection and synthesis," IEEE Transactions on Industrial Electronics, Vol. 66, No. 6, 4956-4967, 2019.
doi:10.1109/TIE.2018.2835381 Google Scholar
12. Lim, C. S., E. Levi, M. Jones, N. Abdul Rahim, and W. P. Hew, "Experimental evaluation of model predictive current control of a five-phase induction motor using all switching states," 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), LS1c.4-1-LS1c.4-7, 2012, doi: 10.1109/EPEPEMC.2012.6397394. Google Scholar
13. Zhang, Y., B. Xia, and H. Yang, "Performance evaluation of an improved model predictive control with field oriented control as a benchmark," IET Electric Power Applications, Vol. 11, No. 5, 677-687, 2017.
doi:10.1049/iet-epa.2015.0614 Google Scholar
14. Ang, Y. L., X. C. Wang, W. Xie, et al. "Deadbeat modelpredictive torque control with discrete space-vector modulation for PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 64, No. 5, 3537-3547, 2017.
doi:10.1109/TIE.2017.2652338 Google Scholar
15. Nasr, A., C. Gu, G. Buticchi, S. Bozhko, and C. Gerada, "A low-complexity modulated model pre-dictive torque and flux control strategy for PMSM drives without weighting factor," IEEE Journal of Emerging and Selected Topics in Power Electronics, doi: 10.1109/JESTPE.2022.3152652. Google Scholar
16. Guo, T., Z. Wang, H. Zhang, X. Jiang, and L. Tian, "Cascaded predictive speed control optimization method based on fuzzy controller," 2021 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), 328-335, 2021, doi: 10.1109/PRECEDE51386.2021.9680980.
doi:10.1109/PRECEDE51386.2021.9680980 Google Scholar
17. Xiang, C., X. Zhang, Z. Li, L. Zhang, and S. Cheng, "Model predict torque control of induction motor based on the DTC switching table," 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), 1348-1352, 2020, doi: 10.1109/ICIEA48937.2020.9248310.
doi:10.1109/ICIEA48937.2020.9248310 Google Scholar
18. Hou, L., J. Ma, and W. Wang, "Sliding mode predictive current control of permanent magnet synchronous motor with cascaded variable rate sliding mode speed controller," IEEE Access, Vol. 10, 33992-34002, 2022, doi: 10.1109/ACCESS.2022.3161629.
doi:10.1109/ACCESS.2022.3161629 Google Scholar
19. Dan, H., P. Zeng, W. Xiong, M. Wen, M. Su, and M. Rivera, "Model predictive control-based direct torque control for matrix converter-fed induction motor with reduced torque ripple," CES Transactions on Electrical Machines and Systems, Vol. 5, No. 2, 90-99, June 2021, doi: 10.30941/CESTEMS.2021.00012.
doi:10.30941/CESTEMS.2021.00012 Google Scholar
20. Geyer, T., Model Predictive Control of High Power Converters and Industrial Drives, John Wiley & Sons, Inc., Chichester, 2016.
doi:10.1002/9781119010883
21. Kim, H., J. Han, Y. Lee, J. Song, and K. Lee, "Torque predictive control of permanent-magnet synchronous motor using duty ratio prediction," 2013 IEEE International Symposium on Industrial Electronics, 1-5, 2013, doi: 10.1109/ISIE.2013.6563664. Google Scholar
22. Dragičvić, T. and M. Novak, "Weighting factor design in model predictive control of power electronic converters: An artificial neural network approach," IEEE Transactions on Industrial Electronics, Vol. 66, No. 11, 8870-8880, Nov. 2019, doi: 10.1109/TIE.2018.2875660.
doi:10.1109/TIE.2018.2875660 Google Scholar