1. Wang, J., J. Weitzen, O. Bayat, V. Sevindik, and M. Li, "Interference coordination for millimeter wave communications in 5G networks for performance optimization," EURASIP Journal on Wireless Communications and Networking, Vol. 2019, No. 1, 46, 2019.
doi:10.1186/s13638-019-1368-6 Google Scholar
. Zhang, J., E. Bjornson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J. Love, "Guest editorial special issue on multiple antenna technologies for beyond 5G --- Part II," IEEE Journal on Selected Areas in CommunicationS, Vol. 38, No. 9, 1941-1944, 2020.
doi:10.1109/JSAC.2020.3000890 Google Scholar
3. Oskouei, H. R. D., A. R. Dastkhosh, A. Mirtaheri, and M. Naseh, "A small cost-effective super ultra-wideband microstrip antenna with variable band-notch filtering and improved radiation pattern with 5G/IoT applications," Progress In Electromagnetics Research M, Vol. 83, 191-202, 2019.
doi:10.2528/PIERM19051802 Google Scholar
4. Azimzadeh, M. and G. Jelodar, "Trace elements homeostasis in brain exposed to 900 MHz RFW emitted from a BTS-antenna model and the protective role of vitamin E," Journal of Animal Physiology and Animal Nutrition, Vol. 104, No. 5, 1568-1574, 2020.
doi:10.1111/jpn.13360 Google Scholar
5. Letaief, K. B., W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, "The roadmap to 6G: AI empowered wireless networks," IEEE Communications Magazine, Vol. 57, No. 8, 84-90, 2019.
doi:10.1109/MCOM.2019.1900271 Google Scholar
6. Varrall, G., 5G Spectrum and Standards, Artech House, 2016.
7. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.
8. Hansen, R. C., "Phased Array Antennas," John Wiley & Sons, Vol. 213, 2009. Google Scholar
9. Sim, M. S., Y.-G. Lim, S. H. Park, L. Dai, and C.-B. Chae, "Deep learning-based mmWave beam selection for 5G NR/6G with sub-6 GHz channel information: Algorithms and prototype validation," IEEE Access, Vol. 8, 51634-51646, 2020.
doi:10.1109/ACCESS.2020.2980285 Google Scholar
10. Jaeschke, T., C. Bredendiek, S. Kuppers, and N. Pohl, "High-precision D-band FMCW-radar sensor based on a wideband SiGe-transceiver MMIC," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 12, 3582-3597, 2014.
doi:10.1109/TMTT.2014.2365460 Google Scholar
11. Li, W.-T., Y.-C. Chiang, J.-H. Tsai, H.-Y. Yang, J.-H. Cheng, and T.-W. Huang, "60-GHz 5-bit phase shifter with integrated VGA phase-error compensation," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 3, 1224-1235, 2013.
doi:10.1109/TMTT.2013.2244226 Google Scholar
12. Zheng, Q., Z. Wang, K.Wang, G.Wang, H. Xu, L.Wang, W. Chen, M. Zhou, Z. Huang, and F. Yu, "Design and performance of a wideband Ka-band 5-b MMIC phase shifter," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 5, 482-484, 2017.
doi:10.1109/LMWC.2017.2690828 Google Scholar
13. Dey, S., S. K. Koul, A. K. Poddar, and U. L. Rohde, "Reliable and compact 3-and 4-bit phase shifters using MEMS SP4T and SP8T switches," Journal of Microelectromechanical Systems, Vol. 27, No. 1, 113-124, 2018.
doi:10.1109/JMEMS.2017.2782780 Google Scholar
14. Garg, R. and A. S. Natarajan, "A 28-GHz low-power phased-array receiver front-end with 360◦ RTPS phase shift range," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4703-4714, 2017.
doi:10.1109/TMTT.2017.2707414 Google Scholar
15. Gu, P. and D. Zhao, "Ka-band CMOS 360◦ reflective-type phase shifter with +-0.2 dB insertion loss variation using triple-resonating load and dual-voltage control techniques," 2018 IEEE Radio Frequency Integrated Circuits Symposium, RFIC), IEEE, 2018. Google Scholar
16. Kalyoncu, I., E. Ozeren, A. Burak, O. Ceylan, and Y. Gurbuz, "A phase-calibration method for vector-sum phase shifters using a self-generated LUT," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 66, No. 4, 1632-1642, 2019.
doi:10.1109/TCSI.2018.2885172 Google Scholar
17. Guomin, D. I. N. G., M. Zimmerman, J. Yu, and H. Qin, Base station antennas including wiper phase shifters, U.S. Patent No. 11,081,789, Aug. 3, 2021.
18. Timofeev, I. E., M. L. Zimmerman, and X. Ai, Phase shifter and antenna including phase shifter, U.S. Patent No. 7,907,096, Mar. 15, 2011.
19. Schmutzler, S., Cellular antenna phase shifter positioning using motorized torque lever, U.S. Patent Application No. 12/771,826.
20. Ko, Y.-H., Distributed antenna system interface tray, U.S. Patent No. 10,123,282, Nov. 6, 2018.
21. Farasat, M., D. N. Thalakotuna, Z. Hu, and Y. Yang, "A review on 5G sub-6 GHz base station antenna design challenges," Electronics, Vol. 10, No. 16, 2000, 2021.
doi:10.3390/electronics10162000 Google Scholar
22. Wu, Z., B. Wu, Z. Su, and X. Zhang, "Development challenges for 5G base station antennas," 2018 International Workshop on Antenna Technology (iWAT), IEEE, 2018. Google Scholar
23. Yang, Y. and Z. Hu, "Advanced multifunctional antennas for 5G and beyond," 2019 Photonics & Electromagnetics Research Symposium --- Fall, PIERS --- Fall, 2019. Google Scholar
24. Zhang, X., F. Sun, G. Zhang, and L. Hou, "Compact UHF/VHF monopole antennas for CubeSats applications," IEEE Access, Vol. 8, 133360-133366, 2020.
doi:10.1109/ACCESS.2020.3008540 Google Scholar
25. Trinh, K. T., J. Feng, S. H. Shehab, and N. C. Karmakar, "1.4 GHz low-cost PIN diode phase shifter for L-band radiometer antenna," IEEE Access, Vol. 7, 95274-95284, 2019.
doi:10.1109/ACCESS.2019.2926140 Google Scholar
26. Ahn, H.-R., Asymmetric Passive Components in Microwave Integrated Circuits, Vol. 182, John Wiley & Sons, 2006.
doi:10.1002/0470036966
27. Roper, J. S. and A. F. Peterson, "Reflectarray power handling capability analysis," 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI, IEEE, 2022. Google Scholar
28. Vaughan, J. and M. Rodney, "Multipactor," IEEE Transactions on Electron Devices, Vol. 35, No. 7, 1172-1180, 1988.
doi:10.1109/16.3387 Google Scholar
29. Kim, H. C., J. P. Verboncoeur, and Y. Y. Lau, "Invited paper --- Modeling RF window breakdown: From vacuum multipactor to RF plasma," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 14, No. 4, 774-782, Aug. 2007.
doi:10.1109/TDEI.2007.4286505 Google Scholar
30. Anza, S., M. Mattes, C. Vicente, J. Gil, D. Raboso, V. E. Boria, and B. Gimeno, "Multipactor theory for multicarrier signals," Physics of Plasmas, Vol. 18, No. 3, 032105, 2011.
doi:10.1063/1.3561821 Google Scholar
31. Bahl, I. J., "Average power handling capability of multilayer microstrip lines," International Journal of RF and Microwave Computer-Aided Engineering: Co-sponsored by the Center for Advanced Manufacturing and Packaging of Microwave, Optical, and Digital Electronics, CAMPmode) at the University of Colorado at Boulder, Vol. 11, No. 6, 385-395, 2001. Google Scholar
32. Bahl, I. J. and K. C. Gupta, "Average power-handling capability of microstrip lines," IEE Journal on Microwaves, Optics and Acoustics, Vol. 3, No. 1, 1-4, 1979.
doi:10.1049/ij-moa.1979.0001 Google Scholar
33. Garg, R., I. Bahl, and M. Bozzi, Microstrip Lines and Slotlines, Artech House, 2013.
34. Parnes, M., "The correlation between thermal resistance and characteristic impedance of microwave transmission lines," Microwave Journal, Vol. 43, No. 3, 82-82, 2000. Google Scholar