Vol. 129
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-02-12
Multi-Objective Optimization Design of ERSRM with Asymmetric Stator Poles
By
Progress In Electromagnetics Research C, Vol. 129, 257-271, 2023
Abstract
This paper proposes a novel asymmetric interior stator topology for torque enhancement and torque ripple reduction in external rotor switched reluctance motor (ERSRM). The new topology and operational principle are first investigated using a simplified linear model. Then, the parametric model of the ERSRM and the comprehensive sensitive analysis that evaluates the influence of each design variable on optimization objectives are presented. Thirdly, the optimal design is selected from the Pareto front which is generated by NSGA-II (fast non-dominated sorting genetic algorithm) and validated by finite element analysis. Finally, the optimal prototype motor is manufactured, and experimental results confirm the validity and superiority of the optimized design.
Citation
Chaozhi Huang, Hongwei Yuan, Wensheng Cao, and Yuliang Wu, "Multi-Objective Optimization Design of ERSRM with Asymmetric Stator Poles," Progress In Electromagnetics Research C, Vol. 129, 257-271, 2023.
doi:10.2528/PIERC22120218
References

1. Howey, B., B. Bilgin, and A. Emadi, "Design of an external-rotor direct drive E-bike switched reluctance motor," IEEE Transactions on Vehicular Technology, Vol. 69, No. 3, 2552-2562, 2020.
doi:10.1109/TVT.2020.2965943

2. Ahn, J. W. and G. F. Lukman, "Switched reluctance motor: Research trends and overview," CES Transactions on Electrical Machines and Systems, Vol. 2, No. 4, 339-347, 2018.
doi:10.30941/CESTEMS.2018.00043

3. Anvari, B., H. Toliyat, and B. Fahimi, "Simultaneous optimization of geometry and firing angles for in-wheel switched reluctance motor drive," IEEE Transactions on Transportation Electrification, Vol. 4, No. 1, 322-329, 2018.
doi:10.1109/TTE.2017.2766452

4. Zhu, J. W. K., W. E. Cheng, and X. D. Xue, "Torque analysis for in-wheel switched reluctance motors with varied number of rotor poles," International Symposium on Electrical Engineering (ISEE), Hong Kong, China, Dec. 20, 2016.

5. Arifin, A., I. Al-Bahadly, and S. Mukhopadhyay, "Performance analysis of a 12/8 and 12/16 switched reluctance machine in low and medium speed operations for wind energy applications," 2012 IEEE International Conference on Power And Energy (PECON), 916-921, 2012.
doi:10.1109/PECon.2012.6450348

6. Balaji, M., S. Ramkumar, and V. Kamaraj, "Sensitivity analysis of geometrical parameters of a switched reluctance motor with modified pole shapes," Journal of Electrical Engineering and Technology, Vol. 9, No. 1, 136-142, 2014.
doi:10.5370/JEET.2014.9.1.136

7. Mehta, S., M. A. Kabir, P. Pramod, et al. "Segmented rotor mutually coupled switched reluctance machine for low torque ripple applications," IEEE Transactions on Industry Applications, Vol. 57, No. 4, 3582-3594, 2021.
doi:10.1109/TIA.2021.3073384

8. Lee, C., J. Lee, and I. G. Jang, "Shape optimization-based design investigation of the switched reluctance motors regarding the target torque and current limitation," Structural and Multidisciplinary Optimization, Vol. 64, No. 2, 859-870, 2021.
doi:10.1007/s00158-021-02897-0

9. Mariappan, G. and K. Lakshmanan, "An enhanced control method for torque ripple minimization of switched reluctance motor using hybrid technique," Journal of Intelligent & Fuzzy Systems, 1-24, 2022.

10. Fatih, K., T. Ismail, M. Hayati, et al. "Reduction of torque ripple in induction motor by artificial neural multinetworks," Turkish Journal of Electrical Engineering and Computer Science, Vol. 24, No. 5, 3492-3502, 2016.

11. Pan, Z. B. and S. H. Fang, "Combined random forest and NSGA-II for optimal design of permanent magnet arc motor," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 10, No. 2, 1800-1812, 2022.
doi:10.1109/JESTPE.2021.3049242

12. Hua, Y. Z., H. Q. Zhu, M. Gao, Z. Ji, et al. "Multi-objective optimization design of permanent magnet assisted bearingless synchronous reluctance motor using NSGA-II," IEEE Transactions on Industrial Electronics, Vol. 68, No. 11, 10477-10487, 2020.
doi:10.1109/TIE.2020.3037873

13. Mohamed, E., A. Mohamed, R. Hegazy, and N. I. Mohamed, "Finite element based overall optimization of switched reluctance motor using multi-objective genetic algorithm (Nsga-II)," Mathematics, Vol. 9, No. 5, 1-20, 2021.

14. Ma, H. Z., C. Z. Huang, X. P. Liu, et al. "The effect of a single-sided pole shoe and slot on reducing torque ripple in a switched reluctance motor," Concurrency Computation, Vol. 32, No. 19, e5810, 2020.
doi:10.1002/cpe.5810

15. Wang, X., L. Yuan, H. Chen, et al. "Sensitivity analysis on novel U-shape dual-stator switched reluctance motor," IEEE Transactions on Applied Superconductivity, Vol. 31, No. 8, 1-5, 2021.

16. Nagarajan, V. S., B. Mahadevan, et al. "Design optimization of ferrite assisted synchronous reluctance motor using multi-objective differential evolution algorithm," COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 36, No. 1, 219-239, 2017.
doi:10.1108/COMPEL-06-2016-0253

17. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, 182-197, 2002.
doi:10.1109/4235.996017

18. Huang, C. Z., H. W. Yuan, Y. L. Wu, et al. "A preference multi-objective optimization method for asymmetric external rotor switched reluctance motor," Progress In Electromagnetics Research C, Vol. 124, 179-196, 2022.
doi:10.2528/PIERC22062402