1. Metamaterials, E., Transmission Line Theory and Microwave Applications, The Engineering Approach, C. Caloz, T. Itoh, 1, A John Wiley Sons Inc. Publication, 2005.
2. Schurig, D. R. S. D., J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Applied Physics Letters, Vol. 88, No. 4, 041109, 2006.
doi:10.1063/1.2166681 Google Scholar
3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
4. Mishra, N., K. Kumari, and R. K. Chaudhary, "An ultra-thin polarization independent quad-band microwave absorber-based on compact metamaterial structures for EMI/EMC applications," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 4, 422-429, 2018.
doi:10.1017/S1759078718000491 Google Scholar
5. Grbic, A. and G. V. Eleftheriades, "Experimental verification of backward-wave radiation from a negative refractive index metamaterial," Journal of Applied Physics, Vol. 92, No. 10, 5930-5935, 2002.
doi:10.1063/1.1513194 Google Scholar
6. Lee, S. H., C. M. Park, Y. M. Seo, and C. K. Kim, "Reversed Doppler effect in double negative metamaterials," Physical Review B, Vol. 81, No. 24, 241102, 2010.
doi:10.1103/PhysRevB.81.241102 Google Scholar
7. Roy, K. and R. Sinha, "Miniaturized omni-directional ZOR antenna with its co-equal circuit for 5G applications," Microsystem Technologies, Vol. 28, No. 11, 2499-2509, 2022.
doi:10.1007/s00542-022-05384-8 Google Scholar
8. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, No. 4, 224-227, 2007.
doi:10.1038/nphoton.2007.28 Google Scholar
9. Yang, J. J., M. Huang, H. Tang, J. Zeng, and L. Dong, "Metamaterial sensors," International Journal of Antennas and Propagation, 2013. Google Scholar
10. Dong, Y. and T. Itoh, "Metamaterial-based antennas," Proceedings of the IEEE, Vol. 100, No. 7, 2271-2285, 2012.
doi:10.1109/JPROC.2012.2187631 Google Scholar
11. Mishra, N. and R. K. Chaudhary, "Design and development of an ultrathin triple band microwave absorber using miniaturized metamaterial structure for near-unity absorption characteristics," Progress In Electromagnetics Research C, Vol. 94, 89-101, 2019.
doi:10.2528/PIERC19043002 Google Scholar
12. Roy, K., C. Barde, P. Ranjan, R. Sinha, and D. Das, "A wide angle polarization insensitive multi-band metamaterial absorber for L, C, S and X band applications," Multimedia Tools and Applications, 1-13, 2022. Google Scholar
13. Mishra, N., D. K. Choudhary, R. Chowdhury, K. Kumari, and R. K. Chaudhary, "An investigation on compact ultra-thin triple band polarization independent metamaterial absorber for microwave frequency applications," IEEE Access, Vol. 5, 4370-4376, 2017.
doi:10.1109/ACCESS.2017.2675439 Google Scholar
14. Roy, K., R. Sinha, and C. Barde, "Linear-to-linear polarization conversion using metasurface for X, Ku and K band applications," Frequenz, Vol. 76, No. 7-8, 461-470, 2022.
doi:10.1515/freq-2021-0204 Google Scholar
15. Chin, J. Y., M. Lu, and T. J. Cui, "Metamaterial polarizers by electric-field-coupled resonators," Applied Physics Letters, Vol. 93, No. 25, 251903, 2008.
doi:10.1063/1.3054161 Google Scholar
16. Ranjan, P., A. Choubey, and S. K. Mahto, "Wide-angle polarization independent multilayer microwave absorber using wind driven optimization technique," International Journal of Applied Engineering Research, Vol. 12, No. 19, 8016-8025, 2017. Google Scholar
17. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
18. Baqir, M. A., M. Ghasemi, P. K. Choudhury, and B. Y. Majlis, "Design and analysis of nanostructured subwavelength metamaterial absorber operating in the UV and visible spectral range," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 18, 2408-2419, 2015.
doi:10.1080/09205071.2015.1073124 Google Scholar
19. Li, H., L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers," Journal of Applied Physics, Vol. 110, No. 1, 014909, 2011.
doi:10.1063/1.3608246 Google Scholar
20. Cheng, Y.-Z., R.-Z. Gong, Y. Nie, and X. Wang, "A wideband metamaterial absorber based on a magnetic resonator loaded with lumped resistors," Chinese Physics B, Vol. 21, No. 12, 127801, 2012.
doi:10.1088/1674-1056/21/12/127801 Google Scholar
21. Ayop, O., M. K. A. Rahim, N. A. Murad, and N. A. Samsuri, "Wideband polarization-insensitive metamaterial absorber with perfect dual resonances," Applied Physics A, Vol. 122, No. 4, 316, 2016.
doi:10.1007/s00339-016-9897-x Google Scholar