1. Narayan, S., B. Sangeetha, and R. M. Jha, Frequency Selective Surfaces Based High Performance Microstrip Antenna, Springer Briefs in Electrical and Computer Engineering, Springer, 2016.
doi:10.1007/978-981-287-775-8
2. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, 2005.
3. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Antennas Propag., Vol. 47, No. 11, 2059-2074, Nov. 1999.
4. Pan, W., C. Huang, P. Chen, X. Ma, C. Hu, and X. Luo, "A low-RCS and high-gain partially reflecting surface antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 945-949, Feb. 2014.
doi:10.1109/TAP.2013.2291008
5. Das, G., A. Sharma, R. K. Gangwar, and M. S. Sharawi, "Performance improvement of multiband MIMO dielectric resonator antenna system with a partially reflecting surface," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 10, 2105-2109, Aug. 2019.
doi:10.1109/LAWP.2019.2938004
6. Ameen, M. and R. K. Chaudhary, "Metamaterial-based wideband circularly polarised antenna with rotated V-shaped metasurface for small satellite applications," Electron Lett., Vol. 55, No. 7, 365-366, Apr. 2019.
doi:10.1049/el.2018.7348
7. Kundu, S., A. Chatterjee, S. Kumar Jana, and S. K. Parui, "A compact umbrella-shaped UWB antenna with gain augmentation using frequency selective surface," Radioengg., Vol. 27, No. 2, 448-454, Jun. 2018.
8. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna," Int. J. RF Microw. Computer-Aided Engg., Vol. 31, No. 2, 1-12, Dec. 2020.
9. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "A simple frequency selective surface structure for performance improvement of ultra-wideband antenna in frequency and time domains," Int. J. RF Microw. Computer-Aided Engg., Vol. 31, No. 11, 1-13, Dec. 2021.
10. Balanis, C. A., Antenna Theory Analysis and Design, John Wiley and Sons, 2005.
11. Gielis, J., "A generic geometric transformation that unifies a wide range of naturaland abstract shapes," American J. Botany, Vol. 90, No. 3, 333-338, 2003.
doi:10.3732/ajb.90.3.333
12. Chattopadhyay, S., Trends in Research on Microstrip Antennas, IntechOpen, 2017.
doi:10.5772/65580
13. Mighani, M. and M. Akbari, "New UWB monopole planer antenna with dual band notched," Progress In Electromagnetics Research C, Vol. 52, 153-162, 2014.
doi:10.2528/PIERC14053002
14. Li, H. F., Z. N. Chen, and L.-W. Li, "Investigation of time-domain characteristics of thin-wire antennas," Microw. Opt. Techn. Lett., Vol. 43, No. 3, 253-258, Nov. 2004.
doi:10.1002/mop.20435
15. Sarkar, T. K., D. Ghosh, A. De, M. C. Taylor, M. C. Wicks, and E. L. Mokole, "Transmission and reception by ultra-wideband (UWB) antennas," IEEE Antennas Propag. Mag., Vol. 48, No. 5, 67-99, Oct. 2006.
16. Ganguly, D., D. Guha, S. Das, and A. Rojatkar, "Systematic approach to estimating monocycle pulse for time-domain studies of UWB antennas using numerical computations and simulation tools," IEEE Antennas Propag. Mag., Vol. 56, No. 4, 73-87, Aug. 2014.
doi:10.1109/MAP.2014.6931659
17. Ansys High Frequency Structural Simulator (HFSS). Version 16.2.
18. Computer Simulation Software (CST). Version 2018.
19. Antony, A. and B. Dasgupta, "Lotus shaped printed antenna for UWB applications," 2021 IEEE 18th India Council Int. Conf. (INDICON), Guwahati, India, Feb. 2021.
20. Schantz, H. G., The Art and Science of Ultrawideband Antennas, Artech House, 2005.
21. Zahran, S. R., M. A. Abdalla, and A. Gaafar, "Time domain analysis for foldable thin UWB monopole antenna," AEU-Inter. J. of Electro. Comm., Vol. 83, 253-262, 2018.
doi:10.1016/j.aeue.2017.09.006
22. Valderas, D., J. I. Sancho, D. Puente, C. Ling, and X. Chen, Ultrawideband Antennas Design and Applications, Imperial College Press, 2011.
23. Chen, Z. N., X. H. Wu, H. F. Li, N. Yang, and M. Y. W. Chia, "Considerations for source pulses and antennas in UWB radio systems," IEEE Trans. Antennas Propag., Vol. 52, No. 7, 1739-1748, Jul. 2004.
doi:10.1109/TAP.2004.831405
24. Natarajamani, S., "Some studies on designs of planar antennas for UWB applications,", Ph.D. dissertation, Dept. Elect. and Comm. Eng., NIT Rourkela, Odisha, India, 2014.
25. Kwon, D. H., "Effect of antenna gain and group delay variations on pulse-preserving capabilities of ultrawideband antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 8, 2208-2215, Aug. 2006.
doi:10.1109/TAP.2006.879189
26. Costa, F., A. Monorchio, and G. Manara, "Efficient analysis of frequency selective surface by a simple equivalent-circuit model," IEEE Antennas Wirel. Propag. Mag., Vol. 54, No. 4, 35-48, Sep. 2012.
doi:10.1109/MAP.2012.6309153
27. Chatterjee, A. and S. K. Parui, "A triple-layer dual-bandpass frequency selective surface of third order response with equivalent circuit analysis," Int. J. RF Microw. Computer Aided Engg., Vol. 30, No. 6, 1-7, Feb. 2020.
28. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Design, characterization and fabrication of a broadband polarization-insensitive multi-layer circuit analogue absorber," IET Microw. Antennas Propag., Vol. 10, No. 8, 850-855, Jun. 2016.
doi:10.1049/iet-map.2015.0653
29. Roy, S. and U. Chakraborty, "Gain enhancement of a dual-band WLAN microstrip antenna loaded with diagonal pattern metamaterials," IET Comm., Vol. 12, No. 12, 1448-1453, Jun. 2018.
doi:10.1049/iet-com.2018.0170