1. Narayan, S., B. Sangeetha, and R. M. Jha, Frequency Selective Surfaces Based High Performance Microstrip Antenna, Springer Briefs in Electrical and Computer Engineering, Springer, 2016.
doi:10.1007/978-981-287-775-8
2. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, 2005.
3. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Antennas Propag., Vol. 47, No. 11, 2059-2074, Nov. 1999. Google Scholar
4. Pan, W., C. Huang, P. Chen, X. Ma, C. Hu, and X. Luo, "A low-RCS and high-gain partially reflecting surface antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 945-949, Feb. 2014.
doi:10.1109/TAP.2013.2291008 Google Scholar
5. Das, G., A. Sharma, R. K. Gangwar, and M. S. Sharawi, "Performance improvement of multiband MIMO dielectric resonator antenna system with a partially reflecting surface," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 10, 2105-2109, Aug. 2019.
doi:10.1109/LAWP.2019.2938004 Google Scholar
6. Ameen, M. and R. K. Chaudhary, "Metamaterial-based wideband circularly polarised antenna with rotated V-shaped metasurface for small satellite applications," Electron Lett., Vol. 55, No. 7, 365-366, Apr. 2019.
doi:10.1049/el.2018.7348 Google Scholar
7. Kundu, S., A. Chatterjee, S. Kumar Jana, and S. K. Parui, "A compact umbrella-shaped UWB antenna with gain augmentation using frequency selective surface," Radioengg., Vol. 27, No. 2, 448-454, Jun. 2018. Google Scholar
8. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna," Int. J. RF Microw. Computer-Aided Engg., Vol. 31, No. 2, 1-12, Dec. 2020. Google Scholar
9. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "A simple frequency selective surface structure for performance improvement of ultra-wideband antenna in frequency and time domains," Int. J. RF Microw. Computer-Aided Engg., Vol. 31, No. 11, 1-13, Dec. 2021. Google Scholar
10. Balanis, C. A., Antenna Theory Analysis and Design, John Wiley and Sons, 2005.
11. Gielis, J., "A generic geometric transformation that unifies a wide range of naturaland abstract shapes," American J. Botany, Vol. 90, No. 3, 333-338, 2003.
doi:10.3732/ajb.90.3.333 Google Scholar
12. Chattopadhyay, S., Trends in Research on Microstrip Antennas, IntechOpen, 2017.
doi:10.5772/65580
13. Mighani, M. and M. Akbari, "New UWB monopole planer antenna with dual band notched," Progress In Electromagnetics Research C, Vol. 52, 153-162, 2014.
doi:10.2528/PIERC14053002 Google Scholar
14. Li, H. F., Z. N. Chen, and L.-W. Li, "Investigation of time-domain characteristics of thin-wire antennas," Microw. Opt. Techn. Lett., Vol. 43, No. 3, 253-258, Nov. 2004.
doi:10.1002/mop.20435 Google Scholar
15. Sarkar, T. K., D. Ghosh, A. De, M. C. Taylor, M. C. Wicks, and E. L. Mokole, "Transmission and reception by ultra-wideband (UWB) antennas," IEEE Antennas Propag. Mag., Vol. 48, No. 5, 67-99, Oct. 2006. Google Scholar
16. Ganguly, D., D. Guha, S. Das, and A. Rojatkar, "Systematic approach to estimating monocycle pulse for time-domain studies of UWB antennas using numerical computations and simulation tools," IEEE Antennas Propag. Mag., Vol. 56, No. 4, 73-87, Aug. 2014.
doi:10.1109/MAP.2014.6931659 Google Scholar
17. Ansys High Frequency Structural Simulator (HFSS). Version 16.2.
18. Computer Simulation Software (CST). Version 2018.
19. Antony, A. and B. Dasgupta, "Lotus shaped printed antenna for UWB applications," 2021 IEEE 18th India Council Int. Conf. (INDICON), Guwahati, India, Feb. 2021. Google Scholar
20. Schantz, H. G., The Art and Science of Ultrawideband Antennas, Artech House, 2005.
21. Zahran, S. R., M. A. Abdalla, and A. Gaafar, "Time domain analysis for foldable thin UWB monopole antenna," AEU-Inter. J. of Electro. Comm., Vol. 83, 253-262, 2018.
doi:10.1016/j.aeue.2017.09.006 Google Scholar
22. Valderas, D., J. I. Sancho, D. Puente, C. Ling, and X. Chen, Ultrawideband Antennas Design and Applications, Imperial College Press, 2011.
23. Chen, Z. N., X. H. Wu, H. F. Li, N. Yang, and M. Y. W. Chia, "Considerations for source pulses and antennas in UWB radio systems," IEEE Trans. Antennas Propag., Vol. 52, No. 7, 1739-1748, Jul. 2004.
doi:10.1109/TAP.2004.831405 Google Scholar
24. Natarajamani, S., "Some studies on designs of planar antennas for UWB applications,", Ph.D. dissertation, Dept. Elect. and Comm. Eng., NIT Rourkela, Odisha, India, 2014. Google Scholar
25. Kwon, D. H., "Effect of antenna gain and group delay variations on pulse-preserving capabilities of ultrawideband antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 8, 2208-2215, Aug. 2006.
doi:10.1109/TAP.2006.879189 Google Scholar
26. Costa, F., A. Monorchio, and G. Manara, "Efficient analysis of frequency selective surface by a simple equivalent-circuit model," IEEE Antennas Wirel. Propag. Mag., Vol. 54, No. 4, 35-48, Sep. 2012.
doi:10.1109/MAP.2012.6309153 Google Scholar
27. Chatterjee, A. and S. K. Parui, "A triple-layer dual-bandpass frequency selective surface of third order response with equivalent circuit analysis," Int. J. RF Microw. Computer Aided Engg., Vol. 30, No. 6, 1-7, Feb. 2020. Google Scholar
28. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Design, characterization and fabrication of a broadband polarization-insensitive multi-layer circuit analogue absorber," IET Microw. Antennas Propag., Vol. 10, No. 8, 850-855, Jun. 2016.
doi:10.1049/iet-map.2015.0653 Google Scholar
29. Roy, S. and U. Chakraborty, "Gain enhancement of a dual-band WLAN microstrip antenna loaded with diagonal pattern metamaterials," IET Comm., Vol. 12, No. 12, 1448-1453, Jun. 2018.
doi:10.1049/iet-com.2018.0170 Google Scholar