Vol. 129
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-02-17
Textile Dual Band Antenna Printed on Artificial Heart Bag for WBAN Communications
By
Progress In Electromagnetics Research C, Vol. 129, 273-287, 2023
Abstract
This article presents a textile dual band antenna printed on an artificial heart (AH) bag for various Wireless Body Area Network (WBAN) communications. The textile dual band antenna operates at two different operating frequencies 2.4 GHz and 5 GHz. The two operating frequencies are reserved for IEEE 802.11b/g/n/ax and IEEE 802.11j WLAN standard. The designed antenna has a frequency bandwidth of (2.3642-2.5375 GHz) for the lower frequency of 2.4 GHz and (4.598-5.1683 GHz) for the upper frequency of 5 GHz. The dual band antenna is integrated with the proposed AH bag that is made from textile material. The effects of both different materials and dimensions of the proposed AH bag in the characteristics of the proposed antenna are investigated. The effect of the human body on the electrical performance of the proposed antenna integrated with the AH bag is presented. The amount of electromagnetic absorbed energy through the human body is also determined in terms of the specific absorption rate (SAR). The obtained SAR value is less than 0.12 W/Kg. This value meets the IEEE standards. Experimental verification for antenna integrated with AH bag and human body is presented.
Citation
Walaa Hassan, "Textile Dual Band Antenna Printed on Artificial Heart Bag for WBAN Communications," Progress In Electromagnetics Research C, Vol. 129, 273-287, 2023.
doi:10.2528/PIERC23010904
References

1. Shcherbachev, A., I. Kudashov, S. Sergey, G.Itkin, A. Buchnev, E. Bychkov, and A. Galyamov, "Development of an artificial heart ventricles adaptive control system," Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), 78-81, April 2019.

2. Shiga, T., T. Kuroda, Y. Tsuboko, H. Miura, Y. Shiraishi, and T. Yambe, "Hemodynamic effects of pressure-volume relation in the atrial contraction model on the total artificial heart using centrifugal blood pumps," 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1815-1818, July 2013.

3. Ji, J., Z. Ling, J. Wang, W. Zhao, G. Liu, and T. Zeng, "Design and analysis of a Halbach magnetized magnetic screw for artificial heart," IEEE Transactions on Magnetics, Vol. 51, No. 11, 1-4, November 2015.
doi:10.1109/TMAG.2015.2436691

4. Shiba, K., M. Nukaya, T. Tsuji, and K. Koshiji, "Analysis of current density and specific absorption rate in biological tissue surrounding transcutaneous transformer for an artificial heart," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 205-213, January 2008.
doi:10.1109/TBME.2007.900550

5. Shah, R., Nilay, et al. "SynCardia portable freedom driver: A single-center experience with 11 patients," Innovations, Vol. 10, No. 3, 188-194, June 2015.
doi:10.1097/imi.0000000000000161

6. Mertz, L., "From artificial kidneys to artificial hearts and beyond: New developments offer great hope," IEEE Pulse, Vol. 3, No. 3, 14-20, May 2012.
doi:10.1109/MPUL.2012.2189165

7. Tang, Y. S., Y. C. Tsai, T. W. Chen, S. Y. Li, and , "Artificial kidney engineering: the development of dialysis membranes for blood purification," Membranes, Vol. 12, No. 2, 177, 2022.
doi:10.3390/membranes12020177

8. Abbasi, Q. H., M. Rehman, K. Qaraqe, and A. Alomainy, "Advances in body-centric wireless communication: Applications and state-of-the-art," Institution of Engineering and Technology, 1-438, London, UK, 2016.

9. Seneviratne, S., Y. Hu, T. Nguyen, G. Lan, S. Khalifa, K. Thilakarathna, M. Hassan, and A. Seneviratne, "A survey of wearable devices and challenges," IEEE Commun. Surv. Tutorials, Vol. 19, 2573-2620, 2017.
doi:10.1109/COMST.2017.2731979

10. Negra, R., I. Jemili, and A. Belghith, "Wireless body area networks: Applications and technologies," Procedia Comput. Sci., Vol. 83, 1274-1281, 2016.
doi:10.1016/j.procs.2016.04.266

11. Dakir, R., J. Zbitou, Mouhsen, A. Tribak, A. M. Sanchez, and M. Latrach, "A new compact and miniaturized multiband uniplanar CPW-fed monopole antenna with T-slot inverted for multiple wireless applications," Int. J. Microw. Wirel. Technol., Vol. 9, 1541-1545, 2017.
doi:10.1017/S1759078717000149

12. Saraswat, R. K. and M. Kumar, "Design and implementation of a multiband metamaterial- loaded reconfigurable antenna for wireless applications," International Journal of Antennas and Propagation, 1-21, 2021.
doi:10.1155/2021/3888563

13. Ashyap, A. Y. I., Z. Z. Abidin, S. H. Dahlan, H. A. Majid, A. M. A. Waddah, et al. "Inverted E-shaped wearable textile antenna for medical applications," IEEE Access, Vol. 6, 35214-35222, 2018.
doi:10.1109/ACCESS.2018.2847280

14. Paracha, K. N., A. D. Butt, G. Murtaza, S. A. Babale, and P. J. Soh, "Liquid metal antennas: Materials, fabrication and applications," Sensors, Vol. 20, No. 1, 1-26, October 2020.

15. Nam, H. J., Y. S. Kim, Y. J. Kim, S. Y. Nam, and S. H. Choa, "Enhanced conductivity in highly stretchable silver and polymer nanocomposite conductors," Journal of Nanoscience and Nanotechnology, Vol. 21, No. 6, 3218-3226, 2021.
doi:10.1166/jnn.2021.19309

16. Kim, N., S. Lienemann, I. Petsagkourakis, et al. "Elastic conducting polymer composites in thermoelectric modules," Nat. Commun., Vol. 11, No. 1, 1-10, 2020.
doi:10.1038/s41467-019-13993-7

17. Dils, C., L. Werft, H. Walter, M. Zwanzig, M. Von Krshiwoblozki, and M. Schneider-Ramelow, "Investigation of the mechanical and electrical properties of elastic textile/polymer composites for stretchable electronics at quasi-static or cyclic mechanical loads," Materials (Basel), Vol. 12, No. 21, November 2019.

18. Park, E. J., J. K. Sim, M.-G. Jeong, H. O. Seo, and Y. D. Kim, "Transparent and superhydrophobic films prepared with polydimethylsiloxane-coated silica nanoparticles," RSC Adv., Vol. 3, No. 31, 12571-12576, 2013.
doi:10.1039/c3ra42402b

19. Janapala, D. K., M. Nesasudha, T. M. Neebha, and R. Kumar, "Design and development of flexible PDMS antenna for UWB-WBAN applications," Wireless Personal Communications, 1-17, 2022.

20. Liao, X., M. Dulle, J. M. D. S. E. Silva, R. B. A. Wehrspohn, et al. "High strength in combination with high toughness in robust and sustainable polymeric materials," Science, Vol. 366, 1376-1379, 2019.
doi:10.1126/science.aay9033

21. Narmadha, R. G., M. Malathi, S. A. Kumar, T. Shanmuganantham, and S. Deivasigamani, "Performance of implantable antenna at ISM band characteristics for biomedical base," ICT Express, Vol. 8, No. 2, 198-201, 2022.
doi:10.1016/j.icte.2021.05.009

22. Vivek, N., S. Kumar, and K. Shambavi, "Design of wearable antennas for 5G applications," International Journal of Electrical Engineering and Technology (IJEET), Vol. 12, 148-156, 2021.

23. Kaur, H. and P. Chawla, "Recent advances in wearable antennas: A survey," The Industrial Internet of Things (IIoT) Intelligent Analytics for Predictive Maintenance, 149-179, 2022.

24. Vidhya, S. S., K. G. Shanthi, P. Sivalakshmi, V. S. Reddy, V. L. Varma, V. D. Kumar, and Y. P. Reddy, "Design of UWB wearable microstrip patch antenna for wireless body worn applications," AIP Conference Proceedings, AIP Publishing LLC, Vol. 2523, No. 1, 020158, 2023.
doi:10.1063/5.0111136

25. Dhara, R., S. K. Jana, and M. Mitra, "Tri-band circularly polarized monopole antenna for wireless communication application," Radioelectronics and Communications Systems, Vol. 63, No. 4, 213-222, 2020.
doi:10.3103/S0735272720040044

26. Mazumdar, B., U. Chakraborty, and S. K. Chowdhury, "Design of compact printed antenna for WIMAX & WLAN applications," Procedia Technology, Vol. 4, 87-91, 2012.
doi:10.1016/j.protcy.2012.05.011

27. Ashok Kumar, S. and T. Shanmuganantham, "Design and performance of textile antenna for wearable applications," Transactions on Electrical and Electronic Materials, 352-355, 2018.
doi:10.1007/s42341-018-0052-6

28. 802.11 WiFi Standards Explained Lifewire, Retrieved, 2018.

29. WiFi Frequency Bands List, , , www.radio-electronics.com, Retrieved 2018.

30. Ansoft High Frequency Structure Simulator (HFSS) ver. 14, , , Ansoft Corp., 2014.

31. CST Microwave Studio, , , ver. 2012, Computer Simulation Technology, Framingham, MA, 2012.

32. Regina, S. and A. Merline, "Flexible leather substrate dual-band wearable antenna with impact analysis on testing under wet condition for human rescue system," Textile Research Journal, 1-16, 2021.

33. Osman, M., M. Abd Rahim, N. Samsuri, H. Salim, and M. Ali, "Embroidered fully textile wearable antenna for medical monitoring applications," Progress In Electromagnetics Research, 321-337, 2011.
doi:10.2528/PIER11041208

34. Engineering ToolBox Relative Permittivity --- The Dielectric Constant, 2010, [online] Available at: https://www.engineeringtoolbox.com/relative-permittivity-d_1660.html.

35. Peng, H., Fiber Electonics, Springer Nature Singapore Pte Ltd., 2020.
doi:10.1007/978-981-15-9945-3

36. Kumar, S. A. and S. Thangavelu, "Design and analysis of implantable CPW fed X-monopole antenna for ISM band applications," Telemed. e-Health, Vol. 20, No. 3, 246-252, 2014.
doi:10.1089/tmj.2013.0186

37. IEEE Standards for Safety Levels With Request to Human Exposure to Radiofrequency Electromagnetic Fields, 3 kHz to 300 GHz, , , IEEE Std. C95.1, 1999.

38. ICNIRP (International Commission on Non-Ionizing Radiation Protection) "Guidelines for limiting exposure to time-varying electric magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, 494-522, 1998.