1. Shcherbachev, A., I. Kudashov, S. Sergey, G.Itkin, A. Buchnev, E. Bychkov, and A. Galyamov, "Development of an artificial heart ventricles adaptive control system," Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), 78-81, April 2019. Google Scholar
2. Shiga, T., T. Kuroda, Y. Tsuboko, H. Miura, Y. Shiraishi, and T. Yambe, "Hemodynamic effects of pressure-volume relation in the atrial contraction model on the total artificial heart using centrifugal blood pumps," 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1815-1818, July 2013. Google Scholar
3. Ji, J., Z. Ling, J. Wang, W. Zhao, G. Liu, and T. Zeng, "Design and analysis of a Halbach magnetized magnetic screw for artificial heart," IEEE Transactions on Magnetics, Vol. 51, No. 11, 1-4, November 2015.
doi:10.1109/TMAG.2015.2436691 Google Scholar
4. Shiba, K., M. Nukaya, T. Tsuji, and K. Koshiji, "Analysis of current density and specific absorption rate in biological tissue surrounding transcutaneous transformer for an artificial heart," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 205-213, January 2008.
doi:10.1109/TBME.2007.900550 Google Scholar
5. Shah, R., Nilay, et al. "SynCardia portable freedom driver: A single-center experience with 11 patients," Innovations, Vol. 10, No. 3, 188-194, June 2015.
doi:10.1097/imi.0000000000000161 Google Scholar
6. Mertz, L., "From artificial kidneys to artificial hearts and beyond: New developments offer great hope," IEEE Pulse, Vol. 3, No. 3, 14-20, May 2012.
doi:10.1109/MPUL.2012.2189165 Google Scholar
7. Tang, Y. S., Y. C. Tsai, T. W. Chen, S. Y. Li, and , "Artificial kidney engineering: the development of dialysis membranes for blood purification," Membranes, Vol. 12, No. 2, 177, 2022.
doi:10.3390/membranes12020177 Google Scholar
8. Abbasi, Q. H., M. Rehman, K. Qaraqe, and A. Alomainy, "Advances in body-centric wireless communication: Applications and state-of-the-art," Institution of Engineering and Technology, 1-438, London, UK, 2016. Google Scholar
9. Seneviratne, S., Y. Hu, T. Nguyen, G. Lan, S. Khalifa, K. Thilakarathna, M. Hassan, and A. Seneviratne, "A survey of wearable devices and challenges," IEEE Commun. Surv. Tutorials, Vol. 19, 2573-2620, 2017.
doi:10.1109/COMST.2017.2731979 Google Scholar
10. Negra, R., I. Jemili, and A. Belghith, "Wireless body area networks: Applications and technologies," Procedia Comput. Sci., Vol. 83, 1274-1281, 2016.
doi:10.1016/j.procs.2016.04.266 Google Scholar
11. Dakir, R., J. Zbitou, Mouhsen, A. Tribak, A. M. Sanchez, and M. Latrach, "A new compact and miniaturized multiband uniplanar CPW-fed monopole antenna with T-slot inverted for multiple wireless applications," Int. J. Microw. Wirel. Technol., Vol. 9, 1541-1545, 2017.
doi:10.1017/S1759078717000149 Google Scholar
12. Saraswat, R. K. and M. Kumar, "Design and implementation of a multiband metamaterial- loaded reconfigurable antenna for wireless applications," International Journal of Antennas and Propagation, 1-21, 2021.
doi:10.1155/2021/3888563 Google Scholar
13. Ashyap, A. Y. I., Z. Z. Abidin, S. H. Dahlan, H. A. Majid, A. M. A. Waddah, et al. "Inverted E-shaped wearable textile antenna for medical applications," IEEE Access, Vol. 6, 35214-35222, 2018.
doi:10.1109/ACCESS.2018.2847280 Google Scholar
14. Paracha, K. N., A. D. Butt, G. Murtaza, S. A. Babale, and P. J. Soh, "Liquid metal antennas: Materials, fabrication and applications," Sensors, Vol. 20, No. 1, 1-26, October 2020. Google Scholar
15. Nam, H. J., Y. S. Kim, Y. J. Kim, S. Y. Nam, and S. H. Choa, "Enhanced conductivity in highly stretchable silver and polymer nanocomposite conductors," Journal of Nanoscience and Nanotechnology, Vol. 21, No. 6, 3218-3226, 2021.
doi:10.1166/jnn.2021.19309 Google Scholar
16. Kim, N., S. Lienemann, I. Petsagkourakis, et al. "Elastic conducting polymer composites in thermoelectric modules," Nat. Commun., Vol. 11, No. 1, 1-10, 2020.
doi:10.1038/s41467-019-13993-7 Google Scholar
17. Dils, C., L. Werft, H. Walter, M. Zwanzig, M. Von Krshiwoblozki, and M. Schneider-Ramelow, "Investigation of the mechanical and electrical properties of elastic textile/polymer composites for stretchable electronics at quasi-static or cyclic mechanical loads," Materials (Basel), Vol. 12, No. 21, November 2019. Google Scholar
18. Park, E. J., J. K. Sim, M.-G. Jeong, H. O. Seo, and Y. D. Kim, "Transparent and superhydrophobic films prepared with polydimethylsiloxane-coated silica nanoparticles," RSC Adv., Vol. 3, No. 31, 12571-12576, 2013.
doi:10.1039/c3ra42402b Google Scholar
19. Janapala, D. K., M. Nesasudha, T. M. Neebha, and R. Kumar, "Design and development of flexible PDMS antenna for UWB-WBAN applications," Wireless Personal Communications, 1-17, 2022. Google Scholar
20. Liao, X., M. Dulle, J. M. D. S. E. Silva, R. B. A. Wehrspohn, et al. "High strength in combination with high toughness in robust and sustainable polymeric materials," Science, Vol. 366, 1376-1379, 2019.
doi:10.1126/science.aay9033 Google Scholar
21. Narmadha, R. G., M. Malathi, S. A. Kumar, T. Shanmuganantham, and S. Deivasigamani, "Performance of implantable antenna at ISM band characteristics for biomedical base," ICT Express, Vol. 8, No. 2, 198-201, 2022.
doi:10.1016/j.icte.2021.05.009 Google Scholar
22. Vivek, N., S. Kumar, and K. Shambavi, "Design of wearable antennas for 5G applications," International Journal of Electrical Engineering and Technology (IJEET), Vol. 12, 148-156, 2021. Google Scholar
23. Kaur, H. and P. Chawla, "Recent advances in wearable antennas: A survey," The Industrial Internet of Things (IIoT) Intelligent Analytics for Predictive Maintenance, 149-179, 2022. Google Scholar
24. Vidhya, S. S., K. G. Shanthi, P. Sivalakshmi, V. S. Reddy, V. L. Varma, V. D. Kumar, and Y. P. Reddy, "Design of UWB wearable microstrip patch antenna for wireless body worn applications," AIP Conference Proceedings, AIP Publishing LLC, Vol. 2523, No. 1, 020158, 2023.
doi:10.1063/5.0111136 Google Scholar
25. Dhara, R., S. K. Jana, and M. Mitra, "Tri-band circularly polarized monopole antenna for wireless communication application," Radioelectronics and Communications Systems, Vol. 63, No. 4, 213-222, 2020.
doi:10.3103/S0735272720040044 Google Scholar
26. Mazumdar, B., U. Chakraborty, and S. K. Chowdhury, "Design of compact printed antenna for WIMAX & WLAN applications," Procedia Technology, Vol. 4, 87-91, 2012.
doi:10.1016/j.protcy.2012.05.011 Google Scholar
27. Ashok Kumar, S. and T. Shanmuganantham, "Design and performance of textile antenna for wearable applications," Transactions on Electrical and Electronic Materials, 352-355, 2018.
doi:10.1007/s42341-018-0052-6 Google Scholar
28. 802.11 WiFi Standards Explained Lifewire, Retrieved, 2018.
29. WiFi Frequency Bands List, , , www.radio-electronics.com, Retrieved 2018.
30. Ansoft High Frequency Structure Simulator (HFSS) ver. 14, , , Ansoft Corp., 2014.
31. CST Microwave Studio, , , ver. 2012, Computer Simulation Technology, Framingham, MA, 2012.
32. Regina, S. and A. Merline, "Flexible leather substrate dual-band wearable antenna with impact analysis on testing under wet condition for human rescue system," Textile Research Journal, 1-16, 2021. Google Scholar
33. Osman, M., M. Abd Rahim, N. Samsuri, H. Salim, and M. Ali, "Embroidered fully textile wearable antenna for medical monitoring applications," Progress In Electromagnetics Research, 321-337, 2011.
doi:10.2528/PIER11041208 Google Scholar
34. Engineering ToolBox Relative Permittivity --- The Dielectric Constant, 2010, [online] Available at: https://www.engineeringtoolbox.com/relative-permittivity-d_1660.html.
35. Peng, H., Fiber Electonics, Springer Nature Singapore Pte Ltd., 2020.
doi:10.1007/978-981-15-9945-3
36. Kumar, S. A. and S. Thangavelu, "Design and analysis of implantable CPW fed X-monopole antenna for ISM band applications," Telemed. e-Health, Vol. 20, No. 3, 246-252, 2014.
doi:10.1089/tmj.2013.0186 Google Scholar
37. IEEE Standards for Safety Levels With Request to Human Exposure to Radiofrequency Electromagnetic Fields, 3 kHz to 300 GHz, , , IEEE Std. C95.1, 1999.
38. ICNIRP (International Commission on Non-Ionizing Radiation Protection) "Guidelines for limiting exposure to time-varying electric magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, 494-522, 1998. Google Scholar