1. Storck, C. R. and F. Duarte-Figueiredo, "A survey of 5G technology evolution, standards, and infrastructure associated with vehicle-to-everything communications by internet of vehicles," IEEE Access, Vol. 8, 117593-117614, 2020.
doi:10.1109/ACCESS.2020.3004779
2. Rabinovich, V. and N. Alexandrov, Antenna Arrays and Automotive Applications, Springer Science & Business Media, 2012.
3. Hasturkoglu, S. and S. Lindenmeier, "A wideband automotive antenna for actual and future mobile communication 5G/LTE/WLAN with low profile," 2017 11th European Conference on Antennas and Propagation (EUCAP), 602-605, IEEE, 2017.
doi:10.23919/EuCAP.2017.7928669
4. Pirinen, P., "A brief overview of 5G research activities," 1st International Conference on 5G for Ubiquitous Connectivity, 17-22, IEEE, 2014.
5. Barba, M., "A high-isolation, wideband and dual-linear polarization patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 5, 1472-1476, 2008.
doi:10.1109/TAP.2008.922889
6. El-Din, M. S., S. I. Shams, A. Allam, M. F. A. Sree, A. Gaafar, and H. El-Hennawy, "Bow-tie slot antenna loaded with superstrate layers for 5G/6G applications," 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), 1561-1562, IEEE, 2021.
doi:10.1109/APS/URSI47566.2021.9703766
7. Wei, L., et al. "Actual deviation correction based on weight improvement for 10-unit Dolph-Chebyshev array antennas," Journal of Ambient Intelligence, Vol. 10, No. 5, 1713-1726, 2019.
8. Chen, Z. N., D. Liu, H. Nakano, X. Qing, and T. Zwick, Handbook of Antennas Technologies, Springer Publishing Company, Incorporated, 2016.
9. Shahrubudin, N., L. T. Chuan, and R. Ramlan, "An overview on 3D printing technology: Technological, materials, and applications," Procedia Manufacturing, Vol. 35, 1286-1296, 2019.
doi:10.1016/j.promfg.2019.06.089
10. Low, Z.-X., Y. T. Chua, B. M. Ray, D. Mattia, I. S. Metcalfe, and D. A. Patterson, "Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques," Journal of Membrane Science, Vol. 523, 596-613, 2017.
doi:10.1016/j.memsci.2016.10.006
11. Stansbury, J. W. and M. J. Idacavage, "3D printing with polymers: Challenges among expanding options and opportunities," Dental Materials, Vol. 32, No. 1, 54-64, 2016.
doi:10.1016/j.dental.2015.09.018
12. Shahrubudin, N., T. C. Lee, and R. J. P. M. Ramlan, "An overview on 3D printing technology: Technological, materials, and applications," Procedia Manufacturing, Vol. 35, 1286-1296, 2019.
doi:10.1016/j.promfg.2019.06.089
13. Kothapudi, V. K. and V. Kumar, "SFCFOS uniform and Chebyshev amplitude distribution linear array antenna for K-band applications," Journal of Electromagnetic Engineering Science, Vol. 19, No. 1, 64-70, 2019.
doi:10.26866/jees.2019.19.1.64
14. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, Inc., 2015.
15. Shafai, L., Dielectric Loaded Antennas, John Wiley & Sons, Inc., www.researchgate.net/publication, 2005.
16. Thornton, J. and K.-C. Huang, Modern Lens Antennas for Communications Engineering, John Wiley & Sons, Inc., 2013.
doi:10.1002/9781118345146
17. Fernandes, C. A., E. B. Lima, and J. R. Costa, "Dielectric lens antennas," Handbook of Antenna Technologies, 1001-1064, 2016.
doi:10.1007/978-981-4560-44-3_40
18. Hasan, N., N. S. M. Hussain1, A. A. M. Faudzi, et al. "Cured epoxy resin dielectric characterization based on accurate waveguide technique," AIP Conference Proceedings, Vol. 2129, No. 1, 020080, AIP Publishing LLC, 2019.
19. Hasan, N., N. H. Noordin, M. S. A. Karim, M. R. M. Rejab, and Q. J. Ma, "Dielectric properties of epoxy-barium titanate composite for 5 GHz microstrip antenna design," SN Applied Sciences, Vol. 2, No. 1, 1-8, 2020.
doi:10.1007/s42452-019-1801-9
20. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Inc., 2011.
21. Artemenko, A., A. Mozharovskiy, A. Maltsev, et al. "Experimental characterization of E-band two-dimensional electronically beam-steerable integrated lens antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1188-1191, 2013.
doi:10.1109/LAWP.2013.2282212
22. Bisognin, A., D. Titz, F. Ferrero, et al. "3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system," 2014 IEEE MTT-S International Microwave Symposium (IMS 2014), 1-4, IEEE, 2014.
23. Silbernagel, C. J., "Additive manufacturing 101-4: What is material jetting?," Canada Makers, 2018.
24. Tofail, S. A. M., E. P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O'Donoghue, and C. Charitidis, "Additive manufacturing: Scientific and technological challenges, market uptake and opportunities," Materials Today, Vol. 21, No. 1, 22-37, 2018.
doi:10.1016/j.mattod.2017.07.001
25. Lin, C.-H., Y.-M. Lin, Y.-L. Lai, and S.-Y. Lee, "Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis-EMA, UDMA, and TEGDMA," The Journal of Prosthetic Dentistry, Vol. 123, No. 2, 349-354, 2020.
doi:10.1016/j.prosdent.2019.05.002
26. Belen, M. A., "Stacked microstrip patch antenna design for ISM band applications with 3D-printing technology," Microwave Optical Technology Letters, Vol. 61, No. 3, 709-712, 2019.
doi:10.1002/mop.31603
27. Zhang, Y.-X., Y.-C. Jiao, and S.-B. Liu, "3-D-printed comb mushroom-like dielectric lens for stable gain enhancement of printed log-periodic dipole array," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 11, 2099-2103, 2018.
doi:10.1109/LAWP.2018.2851298
28. Mianroodi, R. Y., H. Aliakbarian, and G. A. Vandenbosch, "Dual-port dual-band (28/38 GHz) SIW leaky wave antenna for 5G base stations," 12th European Conference on Antennas and Propagation (EuCAP 2018), 1-4, IET, 2018.
29. Ahmad, W. and W. T. Khan, "Small form factor dual band (28/38 GHz) PIFA antenna for 5G applications," 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), 21-24, IEEE, 2017.
doi:10.1109/ICMIM.2017.7918846
30. Aliakbari, H., A. Abdipour, R. Mirzavand, A. Costanzo, and P. Mousavi, "A single feed dual-band circularly polarized millimeter-wave antenna for 5G communication," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-5, IEEE, 2016.
31. Ullah, H., F. A. Tahir, and Z. Ahmad, "A dual-band hexagon monopole antenna for 28 and 38 GHz millimeter-wave communications," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1215-1216, IEEE, 2018.
doi:10.1109/APUSNCURSINRSM.2018.8608274
32. Alnemr, F., M. F. Ahmed, and A. A. Shaalan, "A compact 28/38 GHz MIMO circularly polarized antenna for 5G applications," Journal of Infrared, Millimeter, Terahertz Waves, Vol. 42, No. 3, 338-355, 2021.
doi:10.1007/s10762-021-00770-1
33. Ahmad, I., S. Houjun, Q. Ali, and A. Samad, "Design of umbrella shape single element patch antenna with high gain and high efficiency for 5G wireless communication in 28 GHz," 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 710-713, IEEE, 2020.
doi:10.1109/IBCAST47879.2020.9044577
34. Lin, W., R. W. Ziolkowski, and T. C. Baum, "28 GHz compact omnidirectional circularly polarized antenna for device-to-device communications in the future 5G systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6904-6914, 2017.
doi:10.1109/TAP.2017.2759899
35. Ibrahim, I. M., M. I. Ahmed, H. M. Abdelkader, and M. J. Elsherbini, "A novel compact high gain wide-band log periodic dipole array antenna for wireless communication systems," Journal of Infrared, Millimeter, Terahertz Waves, 1-23, 2022.
36. Farahat, A. E. and K. F. A. Hussein, "Dual-band (28/38 GHz) wideband MIMO antenna for 5G mobile applications," IEEE Access, Vol. 10, 32213-32223, 2022.
doi:10.1109/ACCESS.2022.3160724