Vol. 131
Latest Volume
All Volumes
PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-04-03
Analysis and Design of Dual-Wide Band (28/38 GHz ) Chebyshev Linear Antenna Array Integrated with 3D Printed Radome for 5G Applications
By
Progress In Electromagnetics Research C, Vol. 131, 259-273, 2023
Abstract
This research presents the design of a Chebyshev linear antenna array (CLA) integrated with the dielectric lens. In comparison to a uniform amplitude distribution (UAD), a Chebyshev amplitude distribution (CAD) is used to achieve a low side lobe level (SLL) characteristic and increase the directivity of the antenna array. The proposed CLA is optimized to operate at a high fifth generation (5G) frequency. The proposed CLA achieves a -10 dB wide bandwidth from 25.8 GHz to 42.4 GHz. Dielectric lenses can be employed to modify the phase and amplitude of the antenna array, which increases the realized gain and leads to stable radiation over the operational bandwidth. The main purposes of the dielectric lens are to improve the realized gain, enhance efficiency, and result in stable radiation pattern properties. Also, the research presents a study of two types of dielectric lenses with different shapes and their effects on the efficiency and the realized gain of the antenna. The substrate of the dielectric lens is epoxy resin, which has a relative permittivity (εr) of 2.716. The proposed CLA integrated with the proposed Type 2 dielectric lens has a realized gain of 15.2 dB and 11.94 dB at the dual-bands 28 GHz and 38 GHz, respectively. All the suggested designs are simulated using CSTMWS2020 and HFSS. However, to verify the obtained results, the proposed CLA is fabricated using a photolithography process technique, and the proposed Type 2 dielectric lens is fabricated using a 3D printing technique.
Citation
Ahmed Khairy, Ayman Mohamed Fekry Elboushi, Abdelhameed Abdelmoneim Shaalan, and Mai F. Ahmed, "Analysis and Design of Dual-Wide Band (28/38 GHz ) Chebyshev Linear Antenna Array Integrated with 3D Printed Radome for 5G Applications," Progress In Electromagnetics Research C, Vol. 131, 259-273, 2023.
doi:10.2528/PIERC23020303
References

1. Storck, C. R. and F. Duarte-Figueiredo, "A survey of 5G technology evolution, standards, and infrastructure associated with vehicle-to-everything communications by internet of vehicles," IEEE Access, Vol. 8, 117593-117614, 2020.
doi:10.1109/ACCESS.2020.3004779

2. Rabinovich, V. and N. Alexandrov, Antenna Arrays and Automotive Applications, Springer Science & Business Media, 2012.

3. Hasturkoglu, S. and S. Lindenmeier, "A wideband automotive antenna for actual and future mobile communication 5G/LTE/WLAN with low profile," 2017 11th European Conference on Antennas and Propagation (EUCAP), 602-605, IEEE, 2017.
doi:10.23919/EuCAP.2017.7928669

4. Pirinen, P., "A brief overview of 5G research activities," 1st International Conference on 5G for Ubiquitous Connectivity, 17-22, IEEE, 2014.

5. Barba, M., "A high-isolation, wideband and dual-linear polarization patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 5, 1472-1476, 2008.
doi:10.1109/TAP.2008.922889

6. El-Din, M. S., S. I. Shams, A. Allam, M. F. A. Sree, A. Gaafar, and H. El-Hennawy, "Bow-tie slot antenna loaded with superstrate layers for 5G/6G applications," 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), 1561-1562, IEEE, 2021.
doi:10.1109/APS/URSI47566.2021.9703766

7. Wei, L., et al. "Actual deviation correction based on weight improvement for 10-unit Dolph-Chebyshev array antennas," Journal of Ambient Intelligence, Vol. 10, No. 5, 1713-1726, 2019.

8. Chen, Z. N., D. Liu, H. Nakano, X. Qing, and T. Zwick, Handbook of Antennas Technologies, Springer Publishing Company, Incorporated, 2016.

9. Shahrubudin, N., L. T. Chuan, and R. Ramlan, "An overview on 3D printing technology: Technological, materials, and applications," Procedia Manufacturing, Vol. 35, 1286-1296, 2019.
doi:10.1016/j.promfg.2019.06.089

10. Low, Z.-X., Y. T. Chua, B. M. Ray, D. Mattia, I. S. Metcalfe, and D. A. Patterson, "Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques," Journal of Membrane Science, Vol. 523, 596-613, 2017.
doi:10.1016/j.memsci.2016.10.006

11. Stansbury, J. W. and M. J. Idacavage, "3D printing with polymers: Challenges among expanding options and opportunities," Dental Materials, Vol. 32, No. 1, 54-64, 2016.
doi:10.1016/j.dental.2015.09.018

12. Shahrubudin, N., T. C. Lee, and R. J. P. M. Ramlan, "An overview on 3D printing technology: Technological, materials, and applications," Procedia Manufacturing, Vol. 35, 1286-1296, 2019.
doi:10.1016/j.promfg.2019.06.089

13. Kothapudi, V. K. and V. Kumar, "SFCFOS uniform and Chebyshev amplitude distribution linear array antenna for K-band applications," Journal of Electromagnetic Engineering Science, Vol. 19, No. 1, 64-70, 2019.
doi:10.26866/jees.2019.19.1.64

14. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, Inc., 2015.

15. Shafai, L., Dielectric Loaded Antennas, John Wiley & Sons, Inc., www.researchgate.net/publication, 2005.

16. Thornton, J. and K.-C. Huang, Modern Lens Antennas for Communications Engineering, John Wiley & Sons, Inc., 2013.
doi:10.1002/9781118345146

17. Fernandes, C. A., E. B. Lima, and J. R. Costa, "Dielectric lens antennas," Handbook of Antenna Technologies, 1001-1064, 2016.
doi:10.1007/978-981-4560-44-3_40

18. Hasan, N., N. S. M. Hussain1, A. A. M. Faudzi, et al. "Cured epoxy resin dielectric characterization based on accurate waveguide technique," AIP Conference Proceedings, Vol. 2129, No. 1, 020080, AIP Publishing LLC, 2019.

19. Hasan, N., N. H. Noordin, M. S. A. Karim, M. R. M. Rejab, and Q. J. Ma, "Dielectric properties of epoxy-barium titanate composite for 5 GHz microstrip antenna design," SN Applied Sciences, Vol. 2, No. 1, 1-8, 2020.
doi:10.1007/s42452-019-1801-9

20. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Inc., 2011.

21. Artemenko, A., A. Mozharovskiy, A. Maltsev, et al. "Experimental characterization of E-band two-dimensional electronically beam-steerable integrated lens antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1188-1191, 2013.
doi:10.1109/LAWP.2013.2282212

22. Bisognin, A., D. Titz, F. Ferrero, et al. "3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system," 2014 IEEE MTT-S International Microwave Symposium (IMS 2014), 1-4, IEEE, 2014.

23. Silbernagel, C. J., "Additive manufacturing 101-4: What is material jetting?," Canada Makers, 2018.

24. Tofail, S. A. M., E. P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O'Donoghue, and C. Charitidis, "Additive manufacturing: Scientific and technological challenges, market uptake and opportunities," Materials Today, Vol. 21, No. 1, 22-37, 2018.
doi:10.1016/j.mattod.2017.07.001

25. Lin, C.-H., Y.-M. Lin, Y.-L. Lai, and S.-Y. Lee, "Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis-EMA, UDMA, and TEGDMA," The Journal of Prosthetic Dentistry, Vol. 123, No. 2, 349-354, 2020.
doi:10.1016/j.prosdent.2019.05.002

26. Belen, M. A., "Stacked microstrip patch antenna design for ISM band applications with 3D-printing technology," Microwave Optical Technology Letters, Vol. 61, No. 3, 709-712, 2019.
doi:10.1002/mop.31603

27. Zhang, Y.-X., Y.-C. Jiao, and S.-B. Liu, "3-D-printed comb mushroom-like dielectric lens for stable gain enhancement of printed log-periodic dipole array," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 11, 2099-2103, 2018.
doi:10.1109/LAWP.2018.2851298

28. Mianroodi, R. Y., H. Aliakbarian, and G. A. Vandenbosch, "Dual-port dual-band (28/38 GHz) SIW leaky wave antenna for 5G base stations," 12th European Conference on Antennas and Propagation (EuCAP 2018), 1-4, IET, 2018.

29. Ahmad, W. and W. T. Khan, "Small form factor dual band (28/38 GHz) PIFA antenna for 5G applications," 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), 21-24, IEEE, 2017.
doi:10.1109/ICMIM.2017.7918846

30. Aliakbari, H., A. Abdipour, R. Mirzavand, A. Costanzo, and P. Mousavi, "A single feed dual-band circularly polarized millimeter-wave antenna for 5G communication," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-5, IEEE, 2016.

31. Ullah, H., F. A. Tahir, and Z. Ahmad, "A dual-band hexagon monopole antenna for 28 and 38 GHz millimeter-wave communications," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1215-1216, IEEE, 2018.
doi:10.1109/APUSNCURSINRSM.2018.8608274

32. Alnemr, F., M. F. Ahmed, and A. A. Shaalan, "A compact 28/38 GHz MIMO circularly polarized antenna for 5G applications," Journal of Infrared, Millimeter, Terahertz Waves, Vol. 42, No. 3, 338-355, 2021.
doi:10.1007/s10762-021-00770-1

33. Ahmad, I., S. Houjun, Q. Ali, and A. Samad, "Design of umbrella shape single element patch antenna with high gain and high efficiency for 5G wireless communication in 28 GHz," 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 710-713, IEEE, 2020.
doi:10.1109/IBCAST47879.2020.9044577

34. Lin, W., R. W. Ziolkowski, and T. C. Baum, "28 GHz compact omnidirectional circularly polarized antenna for device-to-device communications in the future 5G systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6904-6914, 2017.
doi:10.1109/TAP.2017.2759899

35. Ibrahim, I. M., M. I. Ahmed, H. M. Abdelkader, and M. J. Elsherbini, "A novel compact high gain wide-band log periodic dipole array antenna for wireless communication systems," Journal of Infrared, Millimeter, Terahertz Waves, 1-23, 2022.

36. Farahat, A. E. and K. F. A. Hussein, "Dual-band (28/38 GHz) wideband MIMO antenna for 5G mobile applications," IEEE Access, Vol. 10, 32213-32223, 2022.
doi:10.1109/ACCESS.2022.3160724