1. Ye, Q., Y. Zhang, and S. Zhang, "High-isolation dual-polarized leaky-wave antenna with fixed beam for full-duplex millimeter-wave applications," IEEE Trans. Antennas Propag., Vol. 69, No. 11, 7202-7212, Nov. 2021.
doi:10.1109/TAP.2021.3109592 Google Scholar
2. Zhang, B., H. Zirath, and Y. P. Zhang, "Investigation on 3-D-printing technologies for millimeter-wave and Terahertz applications," Proc. IEEE, Vol. 105, No. 4, 723-736, Apr. 2017.
doi:10.1109/JPROC.2016.2639520 Google Scholar
3. Zhang, B., H. Sun, and K. Huang, "A metallic 3-D printed airborne high-power handling magneto-electric dipole array with cooling channels," IEEE Trans. Antennas Propag., Vol. 67, No. 12, 7368-7378, Dec. 2019.
doi:10.1109/TAP.2019.2935085 Google Scholar
4. Nuaimi, M., W. Hong, and Y. Zhang, "Design of high-directivity compact-size conical horn lens antenna," IEEE Antennas Wireless Propag. Lett., Vol. 13, 467-470, 2014.
doi:10.1109/LAWP.2013.2297519 Google Scholar
5. Li, Y. and K. Luk, "Low-cost high-gain and broadband substrate-integrated waveguide fed patch antenna array for 60-GHz band," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5531-5538, Nov. 2014.
doi:10.1109/TAP.2014.2350509 Google Scholar
6. Zhu, J., Y. Yang, and Q. Xue, "Low-profile wideband and high-gain LTCC patch antenna array for 60 GHz applications," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 3237-3242, Apr. 2020.
doi:10.1109/TAP.2019.2949913 Google Scholar
7. Zhu, J., C. Chu, and Q. Xue, "60-GHz high gain planar aperture antenna using Low-Temperature Cofired Ceramics (LTCC) technology," IEEE MTT-S International Wireless Symposium (IWS), 1-3, 2019. Google Scholar
8. Wong, H., K. Luk, and H. Lai, "Small antennas in wireless communications," Proc. IEEE, Vol. 100, No. 7, 2109-2121, Jul. 2012.
doi:10.1109/JPROC.2012.2188089 Google Scholar
9. Miura, Y., J. Hirokawa, and G. Yoshida, "Double-layer full-corporate-feed hollow-waveguide slot array antenna in the 60-GHz band," IEEE Trans. Antennas Propag., Vol. 59, No. 8, 2844-2851, Aug. 2011.
doi:10.1109/TAP.2011.2158784 Google Scholar
10. Arfan, M. A. and H. Alqahtani, "Scattering of Laguerre-Gaussian beam from a chiral-coated perfect electromagnetic conductor (PEMC) cylinder," Journal of Computational Electronics, Vol. 21, No. 1, 253-262, 2022.
doi:10.1007/s10825-021-01834-0 Google Scholar
11. Arfan, M. and S. Rehman, "Laguerre-Gaussian beam scattering by a perfect electromagnetic conductor (PEMC) sphere," Arabian Journal for Science and Engineering, 2022. Google Scholar
12. Nguyen, N., N. Delhote, and R. Sauleau, "Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography," IEEE Trans. Antennas Propag., Vol. 58, No. 8, 2757-2762, Aug. 2010.
doi:10.1109/TAP.2010.2050447 Google Scholar
13. Costa, J., C. Fernandes, and H. Legay, "Compact Ka-band lens antennas for LEO satellites," IEEE Trans. Antennas Propag., Vol. 56, No. 5, 1251-1258, May 2008.
doi:10.1109/TAP.2008.922690 Google Scholar
14. Bisognin, A., N. Nachabe, and C. Luxey, "Ball grid array module with integrated shaped lens for 5G backhaul/fronthaul communications in F-band," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6380-6394, Dec. 2017.
doi:10.1109/TAP.2017.2755439 Google Scholar
15. Bisognin, A., D. Titz, and C. Luxey, "3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system," IEEE MTT-S International Microwave Symposium (IMS), 1-4, 2014. Google Scholar
16. Wu, X., G. Elefteriades, and T. Perkins, "Design and characterization of single- and multiple-beam mm-wave circularly polarized substrate lens antennas for wireless communications," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 3, 431-441, Mar. 2001.
doi:10.1109/22.910546 Google Scholar
17. Godi, G., R. Sauleau, and D. Thouroude, "Performance of reduced size substrate lens antennas for millimeter-wave communications," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1278-1286, Apr. 2005.
doi:10.1109/TAP.2005.844420 Google Scholar
18. Nguyen, N., R. Sauleau, and L. Coq, "Reduced-size double-shell lens antenna with flat-top radiation pattern for indoor communications at millimeter waves," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2424-2429, Jun. 2011.
doi:10.1109/TAP.2011.2144554 Google Scholar
19. Nguyen, N., R. Sauleau, and C. Perez, "Very broadband extended hemispherical lenses: Role of matching layers for bandwidth enlargement," IEEE Trans. Antennas Propag., Vol. 57, No. 7, 1907-1913, Jul. 2009.
doi:10.1109/TAP.2009.2021884 Google Scholar
20. Nguyen, N., R. Sauleau, and L. Coq, "Focal array fed dielectric lenses: An attractive solution for beam reconfiguration at millimeter waves," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2152-2159, Jun. 2011.
doi:10.1109/TAP.2011.2144550 Google Scholar
21. Filipovic, D., S. Gearhart, and G. Rebeiz, "Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 10, 1738-1749, Oct. 1993.
doi:10.1109/22.247919 Google Scholar
22. Fernandes, C., E. Lima, and J. Costa, "Broadband integrated lens for illuminating reflector antenna with constant aperture efficiency," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3805-3813, Dec. 2010.
doi:10.1109/TAP.2010.2078463 Google Scholar
23. Fan, C., W. Yang, and Q. Xue, "A wideband and low-profile discrete dielectric lens using 3-D printing technology," IEEE Trans. Antennas Propag., Vol. 66, No. 10, 5160-5169, Oct. 2018.
doi:10.1109/TAP.2018.2862358 Google Scholar
24. Bares, B. and R. Sauleau, "Electrically-small shaped integrated lens antennas: A study of feasibility in Q-band," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1038-1044, Apr. 2007.
doi:10.1109/TAP.2007.893377 Google Scholar
25. Rolland, A., M. Ettorre, and R. Sauleau, "Axisymmetric resonant lens antenna with improved directivity in Ka-band," IEEE Antennas Wireless Propag. Lett., Vol. 10, 37-40, 2011.
doi:10.1109/LAWP.2011.2109931 Google Scholar
26. Nguyen, N., R. Sauleau, and M. Ettorre, "Finite-difference time-domain simulations of the effects of air gaps in double-shell extended hemispherical lenses," IET Microwaves, Antennas Propag., Vol. 4, No. 1, 35-42, Jan. 2010.
doi:10.1049/iet-map.2008.0255 Google Scholar
27. Nguyen, N., A. Rolland, and R. Sauleau, "Size and weight reduction of integrated lens antennas using a cylindrical air cavity," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5993-5998, Dec. 2012.
doi:10.1109/TAP.2012.2208931 Google Scholar
28. Wang, K. and H. Wong, "Design of a wideband circularly polarized millimeter-wave antenna with an extended hemispherical lens," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4303-4308, Aug. 2018.
doi:10.1109/TAP.2018.2841414 Google Scholar
29. PourMousavi, M., M. Wojnowski, and R. Weigel, "The impact of shape and size of air cavity on extended hemispherical lens characterization for wireless applications at 61 GHz," Proc. Seventh Eur. Conf. Antennas and Propag. (EuCAP), 3295-3298, 2013. Google Scholar
30. Pavacic, A., D. Rio, and G. Eleftheriades, "Three-dimensional ray-tracing to model internal reflections in off-axis lens antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 604-612, Feb. 2006.
doi:10.1109/TAP.2005.863143 Google Scholar
31. Wang, J., Z.Wang, and H. Zhang, "Fast calculation of shading effect of reflector antenna," Electron. Warfare, Vol. 123, No. 6, 42-45, Jun. 2008. Google Scholar