Vol. 121
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-11-10
Series-Fed Antenna Array Without Beam Deterioration Using Miniaturized Bandpass Filters for Phase-Slope Balancing
By
Progress In Electromagnetics Research M, Vol. 121, 27-37, 2023
Abstract
A design of a series-fed antenna array without beam deterioration using miniaturized bandpass filters (BPFs) is proposed. The BPFs are connected behind branches of series feed network (SFN) to compensate the varied phase slope of paths, resulting in constant phase difference between elements across the bandwidth. Hence, the beam deterioration versus frequency is removed. The closed-form equations of the phase slopes for BPFs are deduced, and thus they can be designed quantitatively for phase slope balancing. The proposed SFN has advantages of compactness, simplicity, and low loss. For validation, an 8-element antenna array is designed and measured. The gain and sidelobe level are 12.2-12.39 dBi and 11.67-12.65 dB within the bandwidth of 5.2-5.8 GHz. As comparison, the gain and sidelobe level are 12.85-13.77 dBi and 7.18-12.75 dB using conventional feed network. Therefore, the designed antenna array has stable radiation pattern including beam direction, sidelobe level, and gain.
Citation
Huanhuan Shi, Xin Guo, and Wen Wu, "Series-Fed Antenna Array Without Beam Deterioration Using Miniaturized Bandpass Filters for Phase-Slope Balancing," Progress In Electromagnetics Research M, Vol. 121, 27-37, 2023.
doi:10.2528/PIERM23021702
References

1. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, 2nd Edition, Wiley, New York, 1998.

2. Oh, S.-S. and L. Shafai, "Compensated circuit with characteristics of lossless double negative materials and its application to array antennas," IET Microw. Antennas Propag., Vol. 1, No. 1, 29-38, Feb. 2007.
doi:10.1049/iet-map:20050229

3. Mirzaei, H. and G. V. Eleftheriades, "Arbitrary-angle squint-free beamforming in series-fed antenna arrays using non-Foster elements synthesized by negative-group-delay networks," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 1997-2010, May 2015.
doi:10.1109/TAP.2015.2408364

4. Zhu, M. and C.-T. M. Wu, "Negative group delay enabled artificial transmission line exhibiting squint-free, dominant mode, backward leakywave radiation," IEEE MTT-S Int. Microw. Symp. Dig., 309-312, Los Angeles, CA, USA, Aug. 2020.

5. Zhu, M. and C.-T. M.Wu, "Reconfigurable series feed network for squint-free antenna beamforming using distributed amplifier-based negative group delay circuit," Proc. 49th Eur. Microw. Conf. (EuMC), 256-259, Paris, France, Oct. 2019.

6. Zhu, M. and C.-T. M. Wu, "Reconfigurable non-Foster elements and squint-free beamforming networks using active transversal filter-based negative group delay circuit," IEEE Trans. Microw. Theory Techn., Vol. 70, No. 1, 222-231, Jan. 2022.
doi:10.1109/TMTT.2021.3074577

7. Fonseca, N. J. G., A. Ali, and H. Aubert, "Cancellation of beam squint with frequency in serial beamforming network-fed linear array antennas," IEEE Antennas Propag. Mag., Vol. 54, No. 1, 32-39, Feb. 2012.
doi:10.1109/MAP.2012.6202510

8. Cai, S. and J. Liu, "A printed wideband squintless traveling-wave antenna," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 8, 1473-1477, Aug. 2021.
doi:10.1109/LAWP.2021.3087598

9. Mirzaei, H. and G. V. Eleftheriades, "Eliminating beam-deterioration in wideband linear series-fed antenna arrays using feed networks constructed by slow-wave transmission lines," IEEE Antennas Wireless Propag. Lett., Vol. 15, 798-801, 2016.
doi:10.1109/LAWP.2015.2475279

10. Loecker, C., C. G. Salzburg, K. Herbertz, and T. Bertuch, "Series feeding network based on metamaterial compensation lines," IEEE J. Multiscale Multiphys. Comput. Techn., Vol. 2, 142-146, 2017.
doi:10.1109/JMMCT.2017.2756082

11. Lai, A., K. M. K. H. Leong, and T. Itoh, "Novel series divider for antenna arrays with arbitrary element spacing based on a composite right/left-handed transmission line," Proc. 2005 Eur. Microw. Conf. (EuMC), 145-148, Paris, France, Oct. 2005.

12. Bemani, M. and S. Nikmehr, "Dual-band N-way series power divider using CRLH-TL metamaterials with application in feeding dual-band linear broadside array antenna with reduced beam deterioration," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 60, No. 12, 3239-3246, Dec. 2013.
doi:10.1109/TCSI.2013.2255631

13. Ueda, T., S. Yamamoto, Y. Kado, and T. Itoh, "Pseudo-traveling-wave resonator with magnetically tunable phase gradient of fields and its applications to beam-steering antennas," IEEE Trans. Microw. Theory Techn., Vol. 60, No. 10, 3043-3054, Oct. 2012.
doi:10.1109/TMTT.2012.2207737

14. Ueda, T., Y. Kubo, T. Kaneda, M. Hara, Y. Takahashi, and T. Itoh, "Dispersion-free and tunable nonreciprocities in composite right-/left-handed metamaterials and their applications to beam squint reduction in leaky-wave antennas," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 6, 2227-2237, Jun. 2019.
doi:10.1109/TMTT.2019.2909022

15. Eleftheriades, G. V., M. A. Antoniades, and F. Qureshi, "Antenna applications of negativerefractive- index transmission-line structures," IET Microw. Antennas Propag., Vol. 1, No. 1, 12-22, Feb. 2007.
doi:10.1049/iet-map:20050345

16. Antoniades, M. A. and G. V. Eleftheriades, "A CPS leaky-wave antenna with reduced beam deterioration using NRI-TL metamaterials," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 708-721, Mar. 2008.
doi:10.1109/TAP.2008.916965

17. Kossifos, K. M. and M. A. Antoniades, "A NRI-TL metamaterial leaky-wave antenna radiating at broadside with zero beam-deterioration," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 12, 2223-2227, Dec. 2018.
doi:10.1109/LAWP.2018.2871722

18. Li, H., X. Guo, T. Yu, L. Zhu, and W. Wu, "Wideband continuously tunable phase shifter with phase slope tunability and low phase error," IEEE Trans. Microw. Theory Techn., Vol. 70, No. 4, 2147-2155, Apr. 2022.
doi:10.1109/TMTT.2022.3148429

19. Wi, S.-H., Y.-S. Lee, and J.-G. Yook, "Wideband microstrip patch antenna with U-shaped parasitic elements," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1196-1199, Apr. 2007.
doi:10.1109/TAP.2007.893427