1. Andrews, J. G., S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, "What will 5G be?," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, Jun. 2014.
doi:10.1109/JSAC.2014.2328098 Google Scholar
2. Rangan, S., T. S. Rappaport, and E. Erkip, "Millimeter-wave cellular wireless networks: Potentials and challenges," Proc. IEEE, Vol. 102, No. 3, 366-385, Mar. 2014.
doi:10.1109/JPROC.2014.2299397 Google Scholar
3. Rappaport, T. S., Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, and G. C. Trichopoulos, "Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond," IEEE Access, Vol. 7, 78729-78757, 2019.
doi:10.1109/ACCESS.2019.2921522 Google Scholar
4. MacCartney, G. R., S. Deng, S. Sun, and T. S. Rappaport, "Millimeter-wave human blockage at 73 GHz with a simple double knife-edge diffraction model and extension for directional antennas," 2016 IEEE 84th Vehi. Tech. Conf. (VTC-Fall), 1-6, Montreal, QC, Canada, 2016. Google Scholar
5. Sun, S., T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, "MIMO for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both?," IEEE Commun. Mag., Vol. 52, No. 12, 110-121, Dec. 2014.
doi:10.1109/MCOM.2014.6979962 Google Scholar
6. Sun, S., G. R. MacCartney, M. K. Samimi, and T. S. Rappaport, "Synthesizing omnidirectional antenna patterns, received power and path loss from directional antennas for 5G millimeter-wave communications," Proc. IEEE Global Commun. Conf. (GLOBECOM), 3948-3953, San Diego, CA, USA, Dec. 2015. Google Scholar
7. Du, X., K. Saito, J.-I. Takada, and P. Hanpinitsak, "A novel mirror Kirchhoff approximation method for predicting the shadowing effect by a metal cuboid," Progress In Electromagnetics Research M, Vol. 104, 199-212, 2021.
doi:10.2528/PIERM21041306 Google Scholar
8. Du, X. and J. Takada, "Mirror Kirchhoff approximation for predicting shadowing effect by a PEC convex cylinder," 2021 Appl. Computa. Electromagn. Soci., Hamilton, Canada, Aug. 2021. Google Scholar
9. Du, X. and J. Takada, "Low computational cost mirror Kirchhoff approximation for predicting shadowing effect," IEEE Access, Vol. 10, 23829-23841, 2022.
doi:10.1109/ACCESS.2022.3155547 Google Scholar
10. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, Nov. 1974.
doi:10.1109/PROC.1974.9651 Google Scholar
11. Andersen, J. B., "UTD multiple-edge transition zone diffraction," IEEE Trans. Antennas Propag., Vol. 45, No. 7, 1093-1097, Jul. 1997.
doi:10.1109/8.596898 Google Scholar
12. Pathak, P. H., W. Burnside, and R. Marhefka, "A uniform GTD analysis of the diffraction of electromagnetic waves by a smooth convex surface," IEEE Trans. Antennas Propag., Vol. 26, No. 5, 631-642, Sep. 1980.
doi:10.1109/TAP.1980.1142396 Google Scholar
13. Pathak, P. H., "An asymptotic analysis of the scattering of plane waves by a smooth convex cylinder," Radio Science, Vol. 14, No. 3, 419-435, Jun. 1979.
doi:10.1029/RS014i003p00419 Google Scholar
14. Pearson, L., "A scheme for automatic computation of Fock-type integrals," IEEE Trans. Antennas Propag., Vol. 35, No. 10, 1111-1118, Oct. 1987.
doi:10.1109/TAP.1987.1143985 Google Scholar
15. Qi, Y., B. Currie, W. Wang, P. Y. Chung, C. Wu, and J. Litva, "Measurement and simulation of radio wave propagation in two indoor environments," Proc. 6th Inter. Symp. Pers., 1171-1174, Toronto, Ontario, Canada, 1995. Google Scholar
16. Jacob, M., S. Priebe, A. Maltsev, A. Lomayev, V. Erceg, and T. Kurner, "A ray tracing based stochastic human blockage model for the IEEE 802.11ad 60 GHz channel model," Proc. 5th Euro. Conf. Antennas Propag. (EUCAP), 3084-3088, Rome, Italy, 2011. Google Scholar
17. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.
18. Villanese, F., N. E. Evans, and W. G. Scanlon, "Pedestrian-induced fading for indoor channels at 2.45, 5.7 and 62 GHz," 2000 IEEE 52th Vehi. Tech. Conf. (VTC-Fall), 43-48, Boston, MA, USA, 2000. Google Scholar
19. Fakharzadeh, M., J. Ahmadi-Shokouh, B. Biglarbegian, M. R. Nezhad-Ahmadi, and S. Safavi-Naeini, "The effect of human body on indoor radio wave propagation at 57-64 GHz," 2009 IEEE Antennas Propag. Soc. Inter. Symp., 1-4, North Charleston, SC, USA, 2009. Google Scholar
20. Duarte Carvalho de Queiroz, A. and L. C. Trintinália, "An analysis of human body shadowing models for ray-tracing radio channel characterization," 2015 SBMO/IEEE MTT-S Inter. Microwave Optoelectron. Conf. (IMOC), 1-5, Porto de Galinhas, Brazil, 2015. Google Scholar
21. Tang, C., "Back scattering from dielectric-coated infinite cylindrical obstacles," J. Appl. Phys., Vol. 28, No. 5, 628-633, 1957.
doi:10.1063/1.1722815 Google Scholar
22. Jacob, M., S. Priebe, T. Kurner, M. Peter, M. Wisotzki, R. Felbecker, and W. Keusgen, "Fundamental analyses of 60 GHz human blockage," Proc. 7th Euro. Conf. Antennas Propag. (EuCAP), 117-121, Gothenburg, Sweden, 2013. Google Scholar
23. Wu, T., T. S. Rappaport, and C. M. Collins, "The human body and millimeter-wave wireless communication systems: Interactions and implications," 2015 IEEE Inter. Conf. Communi. (ICC), London, UK, 2015. Google Scholar
24. Gandhi, O. P. and A. Riazi, "Absorption of millimeter waves by human beings and its biological implications," IEEE Trans. Microw. Theory Tech., Vol. 34, No. 2, 228-235, Feb. 1986.
doi:10.1109/TMTT.1986.1133316 Google Scholar
25. Southwell, W. H., "Validity of the Fresnel approximation in the near field," J. Opt. Soc., Vol. 71, No. 1, 7-14, 1981.
doi:10.1364/JOSA.71.000007 Google Scholar
26. Haykin, S. and M. Moher, Modern Wireless Communications, 24-29, Library of Congress Cateloging-in-Publication, 2003.