1. Munk, B. A., Frequency Selective Surfaces --- Theory and Design, John Wiley & Sons, 2000.
doi:10.1002/0471723770
2. Abadi, S. M. A. M. H., J. H. Booske, and N. Behdad, "Exploiting mechanical flexure as a means of tuning the responses of large-scale periodic structures," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 933-943, Mar. 2016.
doi:10.1109/TAP.2015.2513418 Google Scholar
3. Ferreira, D., I. Cuinas, R. F. S. Caldeirinha, and T. R. Fernandes, "3-D mechanically tunable square slot FSS," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 242-250, Jan. 2017.
doi:10.1109/TAP.2016.2631131 Google Scholar
4. Azemi, S. N., K. Ghorbani, and W. S. T. Rowe, "A reconfigurable FSS using a spring resonator element," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 781-784, Jun. 2013.
doi:10.1109/LAWP.2013.2270950 Google Scholar
5. Silva, A. N., R. G. G. Carvalho, A. G. D. D'Assuncao, and J. P. Silva, "Simple and efficient design of reconfigurable FSS with triangular patch elements," International Applied Computational Electromagnetics Society Symposium --- Italy (ACES), May 2017. Google Scholar
6. Bai, H., M. Yan, W. Li, J. Wang, L. Zheng, H. Wang, and S. Qu, "Tunable frequency selective surface with angular stability," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 6, 1108-1112, Jun. 2021.
doi:10.1109/LAWP.2021.3073907 Google Scholar
7. Guo, M., Y. Zheng, Q. Chen, L. Ding, D. Sang, F. Yuan, T. Guo, Y. Fu, and , "Analysis and design of a high-transmittance performance for varactor-tunable frequency-selective surface," IEEE Trans. Antennas Propag., Vol. 69, No. 8, 4623-4632, Aug. 2021.
doi:10.1109/TAP.2020.3045517 Google Scholar
8. Tian, T., X. Huang, K. Cheng, Y. Liang, S. Hu, L. Yao, D. Guan, Y. Xu, and P. Liu, "Flexible and reconfigurable frequency selective surface with wide angular stability fabricated with additive manufacturing procedure," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 12, 2428-2432, Dec. 2020.
doi:10.1109/LAWP.2020.3034944 Google Scholar
9. Abirami, S. B., E. F. Sundarsingh, and V. S. Ramalingam, "Mechanically reconfigurable frequency selective surface for RF shielding in indoor wireless environment," IEEE Trans. Electromag. Compatibility, Vol. 62, No. 6, 2643-2646, Dec. 2020.
doi:10.1109/TEMC.2020.2983899 Google Scholar
10. Phon, R., S. Ghosh, and S. Lim, "Active frequency selective surface to switch between absorption and transmission band with additional frequency tuning capability," IEEE Trans. Antennas Propag., Vol. 67, No. 9, 6059-6067, Sept. 2019.
doi:10.1109/TAP.2019.2916752 Google Scholar
11. Pozar, D. M., Microwave Engineering, 3rd Ed., John Wiley & Sons, 2004.
12. Liu, N., X. Sheng, C. Zhang, J. Fan, and D. Guo, "A design method for synthesizing wideband band-stop FSS via its equivalent circuit model," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2721-2725, Aug. 2017.
doi:10.1109/LAWP.2017.2743114 Google Scholar
13. Chen, Q., S. Yang, J. Bai, and Y. Fu, "Design of absorptive/transmissive frequency-selective surface based on parallel resonance," IEEE Trans. Antennas Propag., Vol. 65, No. 9, 4897-4902, Sept. 2017.
doi:10.1109/TAP.2017.2722875 Google Scholar
14. Huang, H. and Z. Shen, "Absorptive frequency-selective transmission structure with square-loop hybrid resonator," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3212-3215, Nov. 2017. Google Scholar
15. Computer Simulation Technology (CST), , , Version: 2019.
16. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna," Int. J. RF Microw. Computer- Aided Engg., Vol. 31, No. 2, 1-12, Dec. 2020. Google Scholar
17. Parui, S. and A. Chatterjee, "A dual-layer frequency selective surface reflector for wideband applications," Radioengineering, Vol. 25, 67-72, Apr. 2016. Google Scholar
18. Kesavan, A., R. Karimian, and A. T. Denidni, "A novel wideband frequency selective surface for millimeter-wave applications," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1711-1714, Jan. 2016.
doi:10.1109/LAWP.2016.2528221 Google Scholar
19. Ghosh, S. and K. V. Srivastava, "An equivalent circuit model of FSS based matematerial absorber using coupled line theory," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 511-514, Nov. 2014. Google Scholar
20. Zhang, L., M. Z. Chen, W. Tang, J. Y. Dai, L. Miao, X. Y. Zhou, S. Jin, Q. Cheng, and T. J. Cui, "A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces," Nature Electro., Vol. 4, 218-227, Mar. 2021.
doi:10.1038/s41928-021-00554-4 Google Scholar