Vol. 135
Latest Volume
All Volumes
PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-07-19
A 3 dB Compact UWB Hybrid Coupler for 5G Millimeter-Wave Applications
By
Progress In Electromagnetics Research C, Vol. 135, 23-34, 2023
Abstract
This paper presents a 3 dB compact Ultra-Wide-Band (UWB) Substrate Integrated Gap Waveguide (SIGW) based hybrid coupler suitable for 5G mm-wave applications. It is a key component in signal processing for wireless communication. It provides a way to control the power distribution of the signal along different ports. It could be used to achieve beamforming and adaptive antenna system. The design steps started with implementing a unit cell of the gap waveguide structure satisfying the required bandwidth of the coupler. A supercell is then implemented. A network of complete ridges is constructed. A further step is to design a coupling section which achieves the required power distribution along the coupling and isolated ports. This coupling section is implemented using a novel approach of inserting an elliptical slot with variable major and minor axes with a certain orientation that achieves the standard performance of a 3 dB directional coupler with 90° ± 5% phase shift. For precise adjustment of this amplitude and phase, vias are further added perpendicular to the major axis of the slot. Its dimension and location have to be optimized. The Finite-Integral-Time-Domain (FDTD) analysis method is adopted (CST Microwave Studio). In addition, another novel approach is developed on this coupler such that the transition and gap layer is implemented on the same PCB layer, which saves the number of layers to only two layers compared to the usual three layers used in literature. Also, using SIGW technology saves the collapse of the top ground layer on the ridge structure, and only plastic pins are used to fix the two layers. The proposed coupler is fabricated and tested, and the results show that it serves the majority of frequency bands employed in 5G systems in the USA and Canada.
Citation
Mohamed Atef Abbas, Abdemegeed Mahmoud Allam, Abdelhamid Gaafar, Hadia El-Hennawy, and Mohamed Fathy Abo Sree, "A 3 dB Compact UWB Hybrid Coupler for 5G Millimeter-Wave Applications," Progress In Electromagnetics Research C, Vol. 135, 23-34, 2023.
doi:10.2528/PIERC23042702
References

1. Rappaport, T. S., S. Sun, R. Mayzus, et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013, doi: 10.1109/ACCESS.2013.2260813.
doi:10.1109/ACCESS.2013.2260813

2. Fatah, S. Y. A., E. K. Hamad, W. Swelam, A. M. M. A. Allam, and H. A. Mohamed, "Design of compact 4-port MIMO antenna based on Minkowski fractal shape DGS for 5G applications," Progress In Electromagnetics Research C, Vol. 113, 123-136, 2021.
doi:10.2528/PIERC21042703

3. Emara, H. M., S. K. El Dyasti, H. H. Ghouz, M. F. A. Sree, and S. Y. A. Fatah, "Compact high gain microstrip array antenna using DGS structure for 5G applications," Progress In Electromagnetics Research C, Vol. 130, 213-225, 2023.
doi:10.2528/PIERC22122110

4. Rappaport, T. S., Y. Xing, O. Kanhere, et al. "Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond," IEEE Access, Vol. 7, 78729-78757, 2019, doi: 10.1109/ACCESS.2019.2921522.
doi:10.1109/ACCESS.2019.2921522

5. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Communications Magazine, Vol. 49, No. 6, 101-107, Jun. 2011, doi: 10.1109/MCOM.2011.5783993.
doi:10.1109/MCOM.2011.5783993

6. Wu, K., M. Bozzi, and N. J. G. Fonseca, "Substrate integrated transmission lines: Review and applications," IEEE Journal of Microwaves, Vol. 1, No. 1, 345-363, Jan. 2021, doi: 10.1109/JMW.2020.3034379.
doi:10.1109/JMW.2020.3034379

7. Kumar, S., A. S. Dixit, R. R. Malekar, H. D. Raut, and L. K. Shevada, "Fifth generation antennas: A comprehensive review of design and performance enhancement techniques," IEEE Access, Vol. 8, 163568-163593, 2020, doi: 10.1109/ACCESS.2020.3020952.
doi:10.1109/ACCESS.2020.3020952

8. Ali AbdElraheem, M., M. Mamdouh M. Ali, I. A , and A. R. Sebak, "Ridge gap waveguide beamforming components and antennas for millimeter-wave applications," Hybrid Planar --- 3D Waveguiding Technologies, Jan. 2023, doi: 10.5772/intechopen.105653.

9. Rambabu, K. and J. Bornemann, "Analysis and design of pro led multi aperture stripline-to-microstrip couplers," IEE Proc.-Microw., Antennas Propag., Vol. 150, No. 6, 484-488, Dec. 2003.
doi:10.1049/ip-map:20031086

10. Jaisson, D., "Multilayer microstrip directional coupler with discrete coupling," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 9, 1591-1595, Sep. 2000.
doi:10.1109/22.869015

11. Kildal, P.-S., E. Alfonso, A. Valero-Nogueira, and E. Rajo-Iglesias, "Local metamaterial-based waveguides in gaps between parallel metal plates," IEEE Antennas Wireless Propag. Lett., Vol. 8, No. 4, 84-87, Apr. 2009.
doi:10.1109/LAWP.2008.2011147

12. Pucci, E., E. Rajo-Iglesias, and P.-S. Kildal, "New microstrip gap waveguide on mushroom-type EBG for packaging of microwave components," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 3, 129-131, Mar. 2012.
doi:10.1109/LMWC.2011.2182638

13. Mahmoud Ali, M. M., S. I. Shams, and A. Sebak, "Ultra-wideband printed ridge gap waveguide hybrid directional coupler for millimetre wave applications," IET Microw. Antennas Propag., Vol. 13, 1181-1187, 2019, https://doi.org/10.1049/iet-map.2018.5511.
doi:10.1049/iet-map.2018.5511

14. Ali, M. M. M. and A. Sebak, "Compact printed ridge gap waveguide crossover for future 5G wireless communication system," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 7, 549-551, Jul. 2018.
doi:10.1109/LMWC.2018.2835149

15. Zhang, J., X. Zhang, and D. Shen, "Design of substrate integrated gap waveguide," 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, 2016, 1-4, doi: 10.1109/MWSYM.2016.7540186.

16. Shen, D., K. Wang, and X. Zhang, "A substrate integrated gap waveguide based wideband 3-dB coupler for 5G applications," IEEE Access, Vol. 6, 66798-66806, 2018, doi: 10.1109/ACCESS.2018.2879438.
doi:10.1109/ACCESS.2018.2879438

17. Kildal, P.-S., "Waveguides and transmission lines in gaps between parallel conducting surfaces,", Patent US20110181373A1, 2009.

18. Shams, S. I. and A. A. Kishk, "Design of 3-dB hybrid coupler based on RGW technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 10, 3849-3855, Oct. 2017, doi: 10.1109/TMTT.2017.2690298.
doi:10.1109/TMTT.2017.2690298

19. Ali, M. M. M., M. S. El-Gendy, M. Al-Hasan, I. B. Mabrouk, A. Sebak, and T. A. Denidni, "A systematic design of a compact wideband hybrid directional coupler based on printed RGW technology," IEEE Access, Vol. 9, 56765-56772, 2021.
doi:10.1109/ACCESS.2021.3071758

20. Ali, M. M. M., S. I. Shams, and A. R. Sebak, "Printed ridge gap waveguide 3-dB coupler: Analysis and design procedure," IEEE Access, Vol. 6, 8501-8509, 2018.
doi:10.1109/ACCESS.2017.2784801

21. Nasr, M. A. and A. A. Kishk, "Analysis and design of broadband ridge-gap waveguide tight and loose hybrid couplers," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 8, 3368-3378, Aug. 2020.
doi:10.1109/TMTT.2020.3002167

22. Afifi, I. and A. R. Sebak, "Wideband printed ridge gap rat-race coupler for differential feeding antenna," IEEE Access, Vol. 8, 78228-78235, 2020.
doi:10.1109/ACCESS.2020.2990169

23. Abbas, M. A., M. F. Cengiz, A. M. M. A. Allam, D. E. Fawzy, H. M. Elhennawy, and M. F. A. Sree, "A novel circular recon gurable metasurface-based compact UWB hybrid coupler for Ku-band applications," IEEE Access, Vol. 10, 129781-129790, 2022, doi: 10.1109/ACCESS.2022.3228110.
doi:10.1109/ACCESS.2022.3228110

24. Shari Sorkherizi, M. and A. A. Kishk, "Transition from microstrip to printed ridge gap waveguide for millimeter-wave application," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1588-1589, Vancouver, BC, Canada, 2015, doi: 10.1109/APS.2015.7305183.

25. El-Din, M. S. H. S., H. El-Hennawy, A. M. M. A. Allam, et al. "Approach for determination of the stop band for ridge gap waveguide," 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE), 72-75, Antalya, Turkey, 2020, doi: 10.1109/ICEEE49618.2020.9102494.

26., https://scdn.rohde-schwarz.com/ur/pws/dl downloads/dl common library/dl brochures and data- sheets/pdf 1/ZVA dat-sw en 5213-5680-22 v1400.pdf. (Accessed on 20 12 2021).

27. Zhao, Z. and T. A. Denidni, "Millimeter-wave printed-RGW hybrid coupler with symmetrical square feed," IEEE Microw. Wireless Compon. Lett., Vol. 30, No. 2, 156-159, Feb. 2020.
doi:10.1109/LMWC.2019.2960475