1. Rappaport, T. S., S. Sun, R. Mayzus, et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013, doi: 10.1109/ACCESS.2013.2260813.
doi:10.1109/ACCESS.2013.2260813 Google Scholar
2. Fatah, S. Y. A., E. K. Hamad, W. Swelam, A. M. M. A. Allam, and H. A. Mohamed, "Design of compact 4-port MIMO antenna based on Minkowski fractal shape DGS for 5G applications," Progress In Electromagnetics Research C, Vol. 113, 123-136, 2021.
doi:10.2528/PIERC21042703 Google Scholar
3. Emara, H. M., S. K. El Dyasti, H. H. Ghouz, M. F. A. Sree, and S. Y. A. Fatah, "Compact high gain microstrip array antenna using DGS structure for 5G applications," Progress In Electromagnetics Research C, Vol. 130, 213-225, 2023.
doi:10.2528/PIERC22122110 Google Scholar
4. Rappaport, T. S., Y. Xing, O. Kanhere, et al. "Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond," IEEE Access, Vol. 7, 78729-78757, 2019, doi: 10.1109/ACCESS.2019.2921522.
doi:10.1109/ACCESS.2019.2921522 Google Scholar
5. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Communications Magazine, Vol. 49, No. 6, 101-107, Jun. 2011, doi: 10.1109/MCOM.2011.5783993.
doi:10.1109/MCOM.2011.5783993 Google Scholar
6. Wu, K., M. Bozzi, and N. J. G. Fonseca, "Substrate integrated transmission lines: Review and applications," IEEE Journal of Microwaves, Vol. 1, No. 1, 345-363, Jan. 2021, doi: 10.1109/JMW.2020.3034379.
doi:10.1109/JMW.2020.3034379 Google Scholar
7. Kumar, S., A. S. Dixit, R. R. Malekar, H. D. Raut, and L. K. Shevada, "Fifth generation antennas: A comprehensive review of design and performance enhancement techniques," IEEE Access, Vol. 8, 163568-163593, 2020, doi: 10.1109/ACCESS.2020.3020952.
doi:10.1109/ACCESS.2020.3020952 Google Scholar
8. Ali AbdElraheem, M., M. Mamdouh M. Ali, I. A, and A. R. Sebak, "Ridge gap waveguide beamforming components and antennas for millimeter-wave applications," Hybrid Planar --- 3D Waveguiding Technologies, Jan. 2023, doi: 10.5772/intechopen.105653. Google Scholar
9. Rambabu, K. and J. Bornemann, "Analysis and design of proled multi aperture stripline-to-microstrip couplers," IEE Proc.-Microw., Antennas Propag., Vol. 150, No. 6, 484-488, Dec. 2003.
doi:10.1049/ip-map:20031086 Google Scholar
10. Jaisson, D., "Multilayer microstrip directional coupler with discrete coupling," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 9, 1591-1595, Sep. 2000.
doi:10.1109/22.869015 Google Scholar
11. Kildal, P.-S., E. Alfonso, A. Valero-Nogueira, and E. Rajo-Iglesias, "Local metamaterial-based waveguides in gaps between parallel metal plates," IEEE Antennas Wireless Propag. Lett., Vol. 8, No. 4, 84-87, Apr. 2009.
doi:10.1109/LAWP.2008.2011147 Google Scholar
12. Pucci, E., E. Rajo-Iglesias, and P.-S. Kildal, "New microstrip gap waveguide on mushroom-type EBG for packaging of microwave components," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 3, 129-131, Mar. 2012.
doi:10.1109/LMWC.2011.2182638 Google Scholar
13. Mahmoud Ali, M. M., S. I. Shams, and A. Sebak, "Ultra-wideband printed ridge gap waveguide hybrid directional coupler for millimetre wave applications," IET Microw. Antennas Propag., Vol. 13, 1181-1187, 2019, https://doi.org/10.1049/iet-map.2018.5511.
doi:10.1049/iet-map.2018.5511 Google Scholar
14. Ali, M. M. M. and A. Sebak, "Compact printed ridge gap waveguide crossover for future 5G wireless communication system," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 7, 549-551, Jul. 2018.
doi:10.1109/LMWC.2018.2835149 Google Scholar
15. Zhang, J., X. Zhang, and D. Shen, "Design of substrate integrated gap waveguide," 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, 2016, 1-4, doi: 10.1109/MWSYM.2016.7540186. Google Scholar
16. Shen, D., K. Wang, and X. Zhang, "A substrate integrated gap waveguide based wideband 3-dB coupler for 5G applications," IEEE Access, Vol. 6, 66798-66806, 2018, doi: 10.1109/ACCESS.2018.2879438.
doi:10.1109/ACCESS.2018.2879438 Google Scholar
17. Kildal, P.-S., "Waveguides and transmission lines in gaps between parallel conducting surfaces,", Patent US20110181373A1, 2009. Google Scholar
18. Shams, S. I. and A. A. Kishk, "Design of 3-dB hybrid coupler based on RGW technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 10, 3849-3855, Oct. 2017, doi: 10.1109/TMTT.2017.2690298.
doi:10.1109/TMTT.2017.2690298 Google Scholar
19. Ali, M. M. M., M. S. El-Gendy, M. Al-Hasan, I. B. Mabrouk, A. Sebak, and T. A. Denidni, "A systematic design of a compact wideband hybrid directional coupler based on printed RGW technology," IEEE Access, Vol. 9, 56765-56772, 2021.
doi:10.1109/ACCESS.2021.3071758 Google Scholar
20. Ali, M. M. M., S. I. Shams, and A. R. Sebak, "Printed ridge gap waveguide 3-dB coupler: Analysis and design procedure," IEEE Access, Vol. 6, 8501-8509, 2018.
doi:10.1109/ACCESS.2017.2784801 Google Scholar
21. Nasr, M. A. and A. A. Kishk, "Analysis and design of broadband ridge-gap waveguide tight and loose hybrid couplers," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 8, 3368-3378, Aug. 2020.
doi:10.1109/TMTT.2020.3002167 Google Scholar
22. Afifi, I. and A. R. Sebak, "Wideband printed ridge gap rat-race coupler for differential feeding antenna," IEEE Access, Vol. 8, 78228-78235, 2020.
doi:10.1109/ACCESS.2020.2990169 Google Scholar
23. Abbas, M. A., M. F. Cengiz, A. M. M. A. Allam, D. E. Fawzy, H. M. Elhennawy, and M. F. A. Sree, "A novel circular recongurable metasurface-based compact UWB hybrid coupler for Ku-band applications," IEEE Access, Vol. 10, 129781-129790, 2022, doi: 10.1109/ACCESS.2022.3228110.
doi:10.1109/ACCESS.2022.3228110 Google Scholar
24. Shari Sorkherizi, M. and A. A. Kishk, "Transition from microstrip to printed ridge gap waveguide for millimeter-wave application," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1588-1589, Vancouver, BC, Canada, 2015, doi: 10.1109/APS.2015.7305183. Google Scholar
25. El-Din, M. S. H. S., H. El-Hennawy, A. M. M. A. Allam, et al. "Approach for determination of the stop band for ridge gap waveguide," 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE), 72-75, Antalya, Turkey, 2020, doi: 10.1109/ICEEE49618.2020.9102494. Google Scholar
26., https://scdn.rohde-schwarz.com/ur/pws/dl downloads/dl common library/dl brochures and data- sheets/pdf 1/ZVA dat-sw en 5213-5680-22 v1400.pdf. (Accessed on 20 12 2021).
27. Zhao, Z. and T. A. Denidni, "Millimeter-wave printed-RGW hybrid coupler with symmetrical square feed," IEEE Microw. Wireless Compon. Lett., Vol. 30, No. 2, 156-159, Feb. 2020.
doi:10.1109/LMWC.2019.2960475 Google Scholar