Vol. 135
Latest Volume
All Volumes
PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-07-27
Design and Analysis of a Compact 38 GHz Wideband Monopole Antenna for 5G mm -Wave Wireless Applications
By
Progress In Electromagnetics Research C, Vol. 135, 83-94, 2023
Abstract
In the current system of wireless communication, Users expect devices that are lightweight and offer broad bandwidth as well as a high data transmission rate. Developments in data speeds, bandwidth, ultra-low response times, excellent dependability, considerable accessibility and improved device-to-device connectivity are what have driven wireless systems toward 5G. These 5G wireless systems require small and efficient antenna designs. This work proposes a 5G mm-wave quadrilateral slotted defected ground structure (QSDGS) including a wideband monopole antenna (WMA) for n259 and n260 5G mm-wave bands. Here, the DGS was modelled using two quadrilateral slots on a ground plane. An inset feeding technique and multiple slots were employed to patch. This structure consists of a DGS-loaded slotted antenna patch mounted on a Rogers/RT Duriod 5880 (εr = 2.2, loss tangent = 0.0009) with dimensions of 12x11x0.9 mm3 (1.42λgx1.30λgx0.10λg). This embedded antenna radiating structure resonates from 35.5 GHz to 44.7 GHz, giving an impedance bandwidth of 9.2 GHz (24.2%), with a centre frequency of 38 GHz. 9.48 dB was the peak gain, and 83-94% efficiency was obtained over the wide band. Based on the extracted data from the proposed antenna, it was found that the antenna is capable of covering the 5G NR n259 and n260 with significant gain, bandwidth, and efficiency. Thus, the antenna has the ability to be considered a possible contender to be used in 5G wireless applications using mm-wave frequencies. A good agreement can be seen here between simulated and measured return losses.
Citation
Idrish Shaik, and Sahukara Krishna Veni, "Design and Analysis of a Compact 38 GHz Wideband Monopole Antenna for 5G mm -Wave Wireless Applications," Progress In Electromagnetics Research C, Vol. 135, 83-94, 2023.
doi:10.2528/PIERC23051902
References

1. Andrews, J. G., S. Buzzi, W. Choi, et al. "What will 5G be?," IEEE Journal on Selected Areas in Communications, Vol. 32, No. 6, 1065-1082, 2014, doi: 10.1109/jsac.2014.2328098.
doi:10.1109/JSAC.2014.2328098

2. Rappaport, T. S., S. Sun, R. Mayzus, et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013, doi: 10.1109/access.2013.2260813.
doi:10.1109/ACCESS.2013.2260813

3. Cao, Y., K.-S. Chin, W. Che, W. Yang, and E. S. Li, "A compact 38 GHz multibeam antenna array with multifolded Butler matrix for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2996-2999, 2017, doi: 10.1109/lawp.2017.2757045.
doi:10.1109/LAWP.2017.2757045

4. Agyapong, P., M. Iwamura, D. Staehle, W. Kiess, and A. Benjebbour, "Design considerations for a 5G network architecture," IEEE Communications Magazine, Vol. 52, No. 11, 65-75, 2014, doi: 10.1109/mcom.2014.6957145.
doi:10.1109/MCOM.2014.6957145

5. Fettweis, G. and S. Alamouti, "5G: Personal mobile internet beyond what cellular did to telephony," IEEE Communications Magazine, Vol. 52, No. 2, 140-145, 2014, doi: 10.1109/mcom.2014.6736754.
doi:10.1109/MCOM.2014.6736754

6. Al-Gburi, A. J., Z. Zakaria, H. Alsariera, et al. "Broadband circular polarised printed antennas for indoor wireless communication systems: A comprehensive review," Micromachines, Vol. 13, No. 7, 1048, 2022, doi: 10.3390/mi13071048.
doi:10.3390/mi13071048

7. Yin, J., Q. Wu, C. Yu, H. Wang, and W. Hong, "Broadband endfiremagnetoelectric dipole antenna array using SICL feeding network for 5G millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4895-4900, 2019, doi: 10.1109/tap.2019.2916463.
doi:10.1109/TAP.2019.2916463

8. Shayea, I., T. Abd Rahman, M. Hadri Azmi, and M. R. Islam, "Real measurement study for rain rate and rain attenuation conducted over 26 GHz microwave 5G link system in Malaysia," IEEE Access, Vol. 6, 19044-19064, 2018, doi: 10.1109/access.2018.2810855.
doi:10.1109/ACCESS.2018.2810855

9. Zahra, H., W. A. Awan, W. A. E. Ali, N. Hussain, S. M. Abbas, and S. Mukhopadhyay, "A 28 GHz broadband helical inspired end-fire antenna and its MIMO configuration for 5G pattern diversity applications," Electronics, Vol. 10, No. 4, 405, Feb. 2021, doi: 10.3390/electronics10040405.
doi:10.3390/electronics10040405

10. Sethi, W. T., M. A. Ashraf, A. Ragheb, A. Alasaad, and S. A. Alshebeili, "Demonstration of millimeter wave 5G setup employing high-gain Vivaldi array," International Journal of Antennas and Propagation, Vol. 2018, 1-12, 2018, doi: 10.1155/2018/3927153.
doi:10.1155/2018/3927153

11. Jilani, S. F. and A. Alomainy, "A multiband millimeter-wave 2-D array based on enhanced Franklin antenna for 5G wireless systems," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2983-2986, 2017, doi: 10.1109/lawp.2017.2756560.
doi:10.1109/LAWP.2017.2756560

12. Ali, M. M. and A.-R. Sebak, "Dual band (28/38 GHz) CPW slot directive antenna for future 5G cellular applications," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 2016, doi: 10.1109/aps.2016.7695908.

13. Przesmycki, R., M. Bugaj, and L. Nowosielski, "Broadband microstrip antenna for 5G wireless systems operating at 28 GHz," Electronics, Vol. 10, No. 1, 1, 2020, doi: 10.3390/electronics10010001.
doi:10.3390/electronics10010001

14. Hussain, M., S. M. R. Jarchavi, S. I. Naqvi, et al. "Design and fabrication of a printed tri-band antenna for 5G applications operating across Ka- and V-band spectrums," Electronics, Vol. 10, No. 21, 2674, 2021, doi: 10.3390/electronics10212674.
doi:10.3390/electronics10212674

15. Khalid, M., S. I. Naqvi, N. Hussain, M. U. Rahman, and Y. Amin, "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020, doi: 10.3390/electronics9010071.
doi:10.3390/electronics9010071

16. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, Vol. 2017, 1-23, 2017, doi: org/10.1155/2017/2018527.
doi:10.1155/2017/2018527

17. Shaik, I. and S. K. Veni, "A novel quadrangular slotted DGS with a wideband monopole radiator for fth-generation sub-6 GHz mid-band applications," Progress In Electromagnetics Research C, Vol. 133, 109-120, 2023.
doi:10.2528/PIERC23020901

18. Hasan, Md. N., S. Bashir, and S. Chu, "Dual band omnidirectional millimeter wave antenna for 5G communications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 12, 1581-1590, 2019, doi: 10.1080/09205071.2019.1617790.
doi:10.1080/09205071.2019.1617790

19. Khattak, M. I., A. Sohail, U. Khan, Z. Barki, and G. Witjaksono, "Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks," Progress In Electromagnetics Research C, Vol. 89, 133-147, 2019.
doi:10.2528/PIERC18101401

20. Dadgarpour, A., M. S. Sorkherizi, and A. Kishk, "A wideband low loss magneto electric dipole antenna for 5G wireless network with gain enhancement using meta lens and gap waveguide technology feeding," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5094-5101, 2016, doi: 10.1109/TAP.2016.2620522.
doi:10.1109/TAP.2016.2620522

21. Al Abbas, E., M. Ikram, and A. T. Mobashsher, "MIMO antenna system for multi-band millimeter-wave 5G and wideband 4G mobile communications," IEEE Access, Vol. 7, 181916-181923, 2019, doi: 10.1109/ACCESS.2019.2958897.
doi:10.1109/ACCESS.2019.2958897

22. Sehrai, D. A., M. Abdullah, A. Altaf, S. H. Kiani, F. Muhammad, M. Tufail, M. Irfan, A. Glowacz, and S. Rahman, "A novel high gain wideband MIMO antenna for 5G millimeter wave applications,", Vol. 9, 1031, 2020, doi: 10.3390/electronics9061031.

23. Marzouk, H. M., M. I. Ahmed, and A. H. A. Shaalan, "Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications," Progress In Electromagnetics Research C, Vol. 93, 103-117, 2019.
doi:10.2528/PIERC19032303

24. Ali, W., S. Das, H. Medkour, and S. Lakrit, "Planar dual-band 27/39 GHz millimeter-wave MIMO antenna for 5G applications," Microsyst. Technol., Vol. 27, No. 1, 283-292, 2021, doi: 10.1007/s00542-020-04951-1.
doi:10.1007/s00542-020-04951-1

25. Raheel, K., A. Altaf, A. Waheed, S. H. Kiani, D. A. Sehrai, F. Tubbal, and R. Raad, "E-shaped H-slotted dual bandmm wave antenna for 5G technology," Electronics, Vol. 10, 1019, 2021, doi: 10.3390/electronics10091019.
doi:10.3390/electronics10091019

26. Venkateswara Rao, M., B. T. Madhav, J. Krishna, Y. Usha Devi, T. Anilkumar, and B. Prudhvi Nadh, "CSRR-loaded T-shaped MIMO antenna for 5G cellular networks and vehicular communications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 8, e21799, 2020, doi: 10.1002/mmce.21799.

27. Hussain, N., M. J. Jeong, A. Abbas, and N. Kim, "Metasurface-based single-layer wideband circularly polarized MIMO antenna for 5G millimeter-wave systems," IEEE Access, Vol. 8, 130293-130304, 2020, doi: 10.1109/access.2020.3009380.
doi:10.1109/ACCESS.2020.3009380

28. Li, S., T. Chi, and Y. Wang, "A millimeter-wave dual-feed square loop antenna for 5G communications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6317-6328, 2017, doi: 10.1109/tap.2017.2723920.
doi:10.1109/TAP.2017.2723920

29. Sharaf, M. H., A. I. Zaki, R. K. Hamad, and M. M. M. Omar, "A novel dual-band (38/60 GHz) patch antenna for 5G mobile handsets," Sensors, Vol. 20, No. 9, 2541, Apr. 2020, doi: 10.3390/s20092541.
doi:10.3390/s20092541

30. Shamim, S. M., U. S. Dina, N. Ara n, and S. Sultana, "Design of efficient 37 GHz millimeter wave microstrip patch antenna for 5G mobile application," Plasmonics, Vol. 16, No. 4, 1417-1425, 2021, doi: 10.1007/s11468-021-01412-x.
doi:10.1007/s11468-021-01412-x