1. Andrews, J. G., S. Buzzi, W. Choi, et al. "What will 5G be?," IEEE Journal on Selected Areas in Communications, Vol. 32, No. 6, 1065-1082, 2014, doi: 10.1109/jsac.2014.2328098.
doi:10.1109/JSAC.2014.2328098 Google Scholar
2. Rappaport, T. S., S. Sun, R. Mayzus, et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013, doi: 10.1109/access.2013.2260813.
doi:10.1109/ACCESS.2013.2260813 Google Scholar
3. Cao, Y., K.-S. Chin, W. Che, W. Yang, and E. S. Li, "A compact 38 GHz multibeam antenna array with multifolded Butler matrix for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2996-2999, 2017, doi: 10.1109/lawp.2017.2757045.
doi:10.1109/LAWP.2017.2757045 Google Scholar
4. Agyapong, P., M. Iwamura, D. Staehle, W. Kiess, and A. Benjebbour, "Design considerations for a 5G network architecture," IEEE Communications Magazine, Vol. 52, No. 11, 65-75, 2014, doi: 10.1109/mcom.2014.6957145.
doi:10.1109/MCOM.2014.6957145 Google Scholar
5. Fettweis, G. and S. Alamouti, "5G: Personal mobile internet beyond what cellular did to telephony," IEEE Communications Magazine, Vol. 52, No. 2, 140-145, 2014, doi: 10.1109/mcom.2014.6736754.
doi:10.1109/MCOM.2014.6736754 Google Scholar
6. Al-Gburi, A. J., Z. Zakaria, H. Alsariera, et al. "Broadband circular polarised printed antennas for indoor wireless communication systems: A comprehensive review," Micromachines, Vol. 13, No. 7, 1048, 2022, doi: 10.3390/mi13071048.
doi:10.3390/mi13071048 Google Scholar
7. Yin, J., Q. Wu, C. Yu, H. Wang, and W. Hong, "Broadband endfiremagnetoelectric dipole antenna array using SICL feeding network for 5G millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4895-4900, 2019, doi: 10.1109/tap.2019.2916463.
doi:10.1109/TAP.2019.2916463 Google Scholar
8. Shayea, I., T. Abd Rahman, M. Hadri Azmi, and M. R. Islam, "Real measurement study for rain rate and rain attenuation conducted over 26 GHz microwave 5G link system in Malaysia," IEEE Access, Vol. 6, 19044-19064, 2018, doi: 10.1109/access.2018.2810855.
doi:10.1109/ACCESS.2018.2810855 Google Scholar
9. Zahra, H., W. A. Awan, W. A. E. Ali, N. Hussain, S. M. Abbas, and S. Mukhopadhyay, "A 28 GHz broadband helical inspired end-fire antenna and its MIMO configuration for 5G pattern diversity applications," Electronics, Vol. 10, No. 4, 405, Feb. 2021, doi: 10.3390/electronics10040405.
doi:10.3390/electronics10040405 Google Scholar
10. Sethi, W. T., M. A. Ashraf, A. Ragheb, A. Alasaad, and S. A. Alshebeili, "Demonstration of millimeter wave 5G setup employing high-gain Vivaldi array," International Journal of Antennas and Propagation, Vol. 2018, 1-12, 2018, doi: 10.1155/2018/3927153.
doi:10.1155/2018/3927153 Google Scholar
11. Jilani, S. F. and A. Alomainy, "A multiband millimeter-wave 2-D array based on enhanced Franklin antenna for 5G wireless systems," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2983-2986, 2017, doi: 10.1109/lawp.2017.2756560.
doi:10.1109/LAWP.2017.2756560 Google Scholar
12. Ali, M. M. and A.-R. Sebak, "Dual band (28/38 GHz) CPW slot directive antenna for future 5G cellular applications," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 2016, doi: 10.1109/aps.2016.7695908. Google Scholar
13. Przesmycki, R., M. Bugaj, and L. Nowosielski, "Broadband microstrip antenna for 5G wireless systems operating at 28 GHz," Electronics, Vol. 10, No. 1, 1, 2020, doi: 10.3390/electronics10010001.
doi:10.3390/electronics10010001 Google Scholar
14. Hussain, M., S. M. R. Jarchavi, S. I. Naqvi, et al. "Design and fabrication of a printed tri-band antenna for 5G applications operating across Ka- and V-band spectrums," Electronics, Vol. 10, No. 21, 2674, 2021, doi: 10.3390/electronics10212674.
doi:10.3390/electronics10212674 Google Scholar
15. Khalid, M., S. I. Naqvi, N. Hussain, M. U. Rahman, and Y. Amin, "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020, doi: 10.3390/electronics9010071.
doi:10.3390/electronics9010071 Google Scholar
16. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, Vol. 2017, 1-23, 2017, doi: org/10.1155/2017/2018527.
doi:10.1155/2017/2018527 Google Scholar
17. Shaik, I. and S. K. Veni, "A novel quadrangular slotted DGS with a wideband monopole radiator for fth-generation sub-6 GHz mid-band applications," Progress In Electromagnetics Research C, Vol. 133, 109-120, 2023.
doi:10.2528/PIERC23020901 Google Scholar
18. Hasan, Md. N., S. Bashir, and S. Chu, "Dual band omnidirectional millimeter wave antenna for 5G communications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 12, 1581-1590, 2019, doi: 10.1080/09205071.2019.1617790.
doi:10.1080/09205071.2019.1617790 Google Scholar
19. Khattak, M. I., A. Sohail, U. Khan, Z. Barki, and G. Witjaksono, "Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks," Progress In Electromagnetics Research C, Vol. 89, 133-147, 2019.
doi:10.2528/PIERC18101401 Google Scholar
20. Dadgarpour, A., M. S. Sorkherizi, and A. Kishk, "A wideband low loss magneto electric dipole antenna for 5G wireless network with gain enhancement using meta lens and gap waveguide technology feeding," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5094-5101, 2016, doi: 10.1109/TAP.2016.2620522.
doi:10.1109/TAP.2016.2620522 Google Scholar
21. Al Abbas, E., M. Ikram, and A. T. Mobashsher, "MIMO antenna system for multi-band millimeter-wave 5G and wideband 4G mobile communications," IEEE Access, Vol. 7, 181916-181923, 2019, doi: 10.1109/ACCESS.2019.2958897.
doi:10.1109/ACCESS.2019.2958897 Google Scholar
22. Sehrai, D. A., M. Abdullah, A. Altaf, S. H. Kiani, F. Muhammad, M. Tufail, M. Irfan, A. Glowacz, and S. Rahman, "A novel high gain wideband MIMO antenna for 5G millimeter wave applications,", Vol. 9, 1031, 2020, doi: 10.3390/electronics9061031. Google Scholar
23. Marzouk, H. M., M. I. Ahmed, and A. H. A. Shaalan, "Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications," Progress In Electromagnetics Research C, Vol. 93, 103-117, 2019.
doi:10.2528/PIERC19032303 Google Scholar
24. Ali, W., S. Das, H. Medkour, and S. Lakrit, "Planar dual-band 27/39 GHz millimeter-wave MIMO antenna for 5G applications," Microsyst. Technol., Vol. 27, No. 1, 283-292, 2021, doi: 10.1007/s00542-020-04951-1.
doi:10.1007/s00542-020-04951-1 Google Scholar
25. Raheel, K., A. Altaf, A. Waheed, S. H. Kiani, D. A. Sehrai, F. Tubbal, and R. Raad, "E-shaped H-slotted dual bandmm wave antenna for 5G technology," Electronics, Vol. 10, 1019, 2021, doi: 10.3390/electronics10091019.
doi:10.3390/electronics10091019 Google Scholar
26. Venkateswara Rao, M., B. T. Madhav, J. Krishna, Y. Usha Devi, T. Anilkumar, and B. Prudhvi Nadh, "CSRR-loaded T-shaped MIMO antenna for 5G cellular networks and vehicular communications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 8, e21799, 2020, doi: 10.1002/mmce.21799. Google Scholar
27. Hussain, N., M. J. Jeong, A. Abbas, and N. Kim, "Metasurface-based single-layer wideband circularly polarized MIMO antenna for 5G millimeter-wave systems," IEEE Access, Vol. 8, 130293-130304, 2020, doi: 10.1109/access.2020.3009380.
doi:10.1109/ACCESS.2020.3009380 Google Scholar
28. Li, S., T. Chi, and Y. Wang, "A millimeter-wave dual-feed square loop antenna for 5G communications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6317-6328, 2017, doi: 10.1109/tap.2017.2723920.
doi:10.1109/TAP.2017.2723920 Google Scholar
29. Sharaf, M. H., A. I. Zaki, R. K. Hamad, and M. M. M. Omar, "A novel dual-band (38/60 GHz) patch antenna for 5G mobile handsets," Sensors, Vol. 20, No. 9, 2541, Apr. 2020, doi: 10.3390/s20092541.
doi:10.3390/s20092541 Google Scholar
30. Shamim, S. M., U. S. Dina, N. Aran, and S. Sultana, "Design of efficient 37 GHz millimeter wave microstrip patch antenna for 5G mobile application," Plasmonics, Vol. 16, No. 4, 1417-1425, 2021, doi: 10.1007/s11468-021-01412-x.
doi:10.1007/s11468-021-01412-x Google Scholar