1. Andrews, J. G., S. Buzzi, W. Choi, et al. "What will 5G be?," IEEE Journal on Selected Areas in Communications, Vol. 32, No. 6, 1065-1082, 2014, doi: 10.1109/jsac.2014.2328098.
doi:10.1109/JSAC.2014.2328098
2. Rappaport, T. S., S. Sun, R. Mayzus, et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013, doi: 10.1109/access.2013.2260813.
doi:10.1109/ACCESS.2013.2260813
3. Cao, Y., K.-S. Chin, W. Che, W. Yang, and E. S. Li, "A compact 38 GHz multibeam antenna array with multifolded Butler matrix for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2996-2999, 2017, doi: 10.1109/lawp.2017.2757045.
doi:10.1109/LAWP.2017.2757045
4. Agyapong, P., M. Iwamura, D. Staehle, W. Kiess, and A. Benjebbour, "Design considerations for a 5G network architecture," IEEE Communications Magazine, Vol. 52, No. 11, 65-75, 2014, doi: 10.1109/mcom.2014.6957145.
doi:10.1109/MCOM.2014.6957145
5. Fettweis, G. and S. Alamouti, "5G: Personal mobile internet beyond what cellular did to telephony," IEEE Communications Magazine, Vol. 52, No. 2, 140-145, 2014, doi: 10.1109/mcom.2014.6736754.
doi:10.1109/MCOM.2014.6736754
6. Al-Gburi, A. J., Z. Zakaria, H. Alsariera, et al. "Broadband circular polarised printed antennas for indoor wireless communication systems: A comprehensive review," Micromachines, Vol. 13, No. 7, 1048, 2022, doi: 10.3390/mi13071048.
doi:10.3390/mi13071048
7. Yin, J., Q. Wu, C. Yu, H. Wang, and W. Hong, "Broadband endfiremagnetoelectric dipole antenna array using SICL feeding network for 5G millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4895-4900, 2019, doi: 10.1109/tap.2019.2916463.
doi:10.1109/TAP.2019.2916463
8. Shayea, I., T. Abd Rahman, M. Hadri Azmi, and M. R. Islam, "Real measurement study for rain rate and rain attenuation conducted over 26 GHz microwave 5G link system in Malaysia," IEEE Access, Vol. 6, 19044-19064, 2018, doi: 10.1109/access.2018.2810855.
doi:10.1109/ACCESS.2018.2810855
9. Zahra, H., W. A. Awan, W. A. E. Ali, N. Hussain, S. M. Abbas, and S. Mukhopadhyay, "A 28 GHz broadband helical inspired end-fire antenna and its MIMO configuration for 5G pattern diversity applications," Electronics, Vol. 10, No. 4, 405, Feb. 2021, doi: 10.3390/electronics10040405.
doi:10.3390/electronics10040405
10. Sethi, W. T., M. A. Ashraf, A. Ragheb, A. Alasaad, and S. A. Alshebeili, "Demonstration of millimeter wave 5G setup employing high-gain Vivaldi array," International Journal of Antennas and Propagation, Vol. 2018, 1-12, 2018, doi: 10.1155/2018/3927153.
doi:10.1155/2018/3927153
11. Jilani, S. F. and A. Alomainy, "A multiband millimeter-wave 2-D array based on enhanced Franklin antenna for 5G wireless systems," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2983-2986, 2017, doi: 10.1109/lawp.2017.2756560.
doi:10.1109/LAWP.2017.2756560
12. Ali, M. M. and A.-R. Sebak, "Dual band (28/38 GHz) CPW slot directive antenna for future 5G cellular applications," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 2016, doi: 10.1109/aps.2016.7695908.
13. Przesmycki, R., M. Bugaj, and L. Nowosielski, "Broadband microstrip antenna for 5G wireless systems operating at 28 GHz," Electronics, Vol. 10, No. 1, 1, 2020, doi: 10.3390/electronics10010001.
doi:10.3390/electronics10010001
14. Hussain, M., S. M. R. Jarchavi, S. I. Naqvi, et al. "Design and fabrication of a printed tri-band antenna for 5G applications operating across Ka- and V-band spectrums," Electronics, Vol. 10, No. 21, 2674, 2021, doi: 10.3390/electronics10212674.
doi:10.3390/electronics10212674
15. Khalid, M., S. I. Naqvi, N. Hussain, M. U. Rahman, and Y. Amin, "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020, doi: 10.3390/electronics9010071.
doi:10.3390/electronics9010071
16. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, Vol. 2017, 1-23, 2017, doi: org/10.1155/2017/2018527.
doi:10.1155/2017/2018527
17. Shaik, I. and S. K. Veni, "A novel quadrangular slotted DGS with a wideband monopole radiator for fth-generation sub-6 GHz mid-band applications," Progress In Electromagnetics Research C, Vol. 133, 109-120, 2023.
doi:10.2528/PIERC23020901
18. Hasan, Md. N., S. Bashir, and S. Chu, "Dual band omnidirectional millimeter wave antenna for 5G communications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 12, 1581-1590, 2019, doi: 10.1080/09205071.2019.1617790.
doi:10.1080/09205071.2019.1617790
19. Khattak, M. I., A. Sohail, U. Khan, Z. Barki, and G. Witjaksono, "Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks," Progress In Electromagnetics Research C, Vol. 89, 133-147, 2019.
doi:10.2528/PIERC18101401
20. Dadgarpour, A., M. S. Sorkherizi, and A. Kishk, "A wideband low loss magneto electric dipole antenna for 5G wireless network with gain enhancement using meta lens and gap waveguide technology feeding," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5094-5101, 2016, doi: 10.1109/TAP.2016.2620522.
doi:10.1109/TAP.2016.2620522
21. Al Abbas, E., M. Ikram, and A. T. Mobashsher, "MIMO antenna system for multi-band millimeter-wave 5G and wideband 4G mobile communications," IEEE Access, Vol. 7, 181916-181923, 2019, doi: 10.1109/ACCESS.2019.2958897.
doi:10.1109/ACCESS.2019.2958897
22. Sehrai, D. A., M. Abdullah, A. Altaf, S. H. Kiani, F. Muhammad, M. Tufail, M. Irfan, A. Glowacz, and S. Rahman, "A novel high gain wideband MIMO antenna for 5G millimeter wave applications,", Vol. 9, 1031, 2020, doi: 10.3390/electronics9061031.
23. Marzouk, H. M., M. I. Ahmed, and A. H. A. Shaalan, "Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications," Progress In Electromagnetics Research C, Vol. 93, 103-117, 2019.
doi:10.2528/PIERC19032303
24. Ali, W., S. Das, H. Medkour, and S. Lakrit, "Planar dual-band 27/39 GHz millimeter-wave MIMO antenna for 5G applications," Microsyst. Technol., Vol. 27, No. 1, 283-292, 2021, doi: 10.1007/s00542-020-04951-1.
doi:10.1007/s00542-020-04951-1
25. Raheel, K., A. Altaf, A. Waheed, S. H. Kiani, D. A. Sehrai, F. Tubbal, and R. Raad, "E-shaped H-slotted dual bandmm wave antenna for 5G technology," Electronics, Vol. 10, 1019, 2021, doi: 10.3390/electronics10091019.
doi:10.3390/electronics10091019
26. Venkateswara Rao, M., B. T. Madhav, J. Krishna, Y. Usha Devi, T. Anilkumar, and B. Prudhvi Nadh, "CSRR-loaded T-shaped MIMO antenna for 5G cellular networks and vehicular communications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 8, e21799, 2020, doi: 10.1002/mmce.21799.
27. Hussain, N., M. J. Jeong, A. Abbas, and N. Kim, "Metasurface-based single-layer wideband circularly polarized MIMO antenna for 5G millimeter-wave systems," IEEE Access, Vol. 8, 130293-130304, 2020, doi: 10.1109/access.2020.3009380.
doi:10.1109/ACCESS.2020.3009380
28. Li, S., T. Chi, and Y. Wang, "A millimeter-wave dual-feed square loop antenna for 5G communications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6317-6328, 2017, doi: 10.1109/tap.2017.2723920.
doi:10.1109/TAP.2017.2723920
29. Sharaf, M. H., A. I. Zaki, R. K. Hamad, and M. M. M. Omar, "A novel dual-band (38/60 GHz) patch antenna for 5G mobile handsets," Sensors, Vol. 20, No. 9, 2541, Apr. 2020, doi: 10.3390/s20092541.
doi:10.3390/s20092541
30. Shamim, S. M., U. S. Dina, N. Aran, and S. Sultana, "Design of efficient 37 GHz millimeter wave microstrip patch antenna for 5G mobile application," Plasmonics, Vol. 16, No. 4, 1417-1425, 2021, doi: 10.1007/s11468-021-01412-x.
doi:10.1007/s11468-021-01412-x