Vol. 135
Latest Volume
All Volumes
PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-06
Design, Analysis, of High Performance Antennas for 5G Communications Analysis Using WCIP
By
Progress In Electromagnetics Research C, Vol. 135, 211-226, 2023
Abstract
This article presents the recent advancements in utilizing metamaterials for the development of high-performance antennas in 5G communications. The focus is on negative refractive index metamaterials composed of two unit cells: a complementary infinite split ring resonator (CI-SRR) and a Hilbert fractal embedded in the ground plane. These metamaterials enable antenna size reduction while enhancing performance. The proposed antenna metamaterials offer improved antenna characteristics and precise control over physical dimensions, facilitating the creation of highly efficient devices with miniaturized antennas. Additionally, an antenna array 1×3 is incorporated to further enhance performance. The antenna design has a compact size of 40×33×1.57 mm2 and is fabricated using Rogers RT/Duroid 5880 material. The final broadband antenna exhibits a wide impedance bandwidth of 12.71% at 32 GHz, accompanied by a gain of 10.5 dBi. The comparison between wave concept iterative process (WCIP) calculations and measurements shows good agreement. The fabricated structure is thoroughly analyzed using a Keysight PNA network analyzer, demonstrating its successful operation and suitability for broadband applications.
Citation
Anouar Mondir, Mohammed Ali Ennasar, Larbi Setti, and Figuigue Mustapha, "Design, Analysis, of High Performance Antennas for 5G Communications Analysis Using WCIP," Progress In Electromagnetics Research C, Vol. 135, 211-226, 2023.
doi:10.2528/PIERC23052202
References

1. Tuyen, V. V., L. Krishnamurthy, S. Qing, and A. Rezazadeh, "3-D low-loss coplanar waveguide transmission lines in multilayer MMICs," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, 2864-2871, 2006.
doi:10.1109/TMTT.2006.875458

2. Mondal, K. and P. Sarkar, "High gain triple-band microstrip patch antenna for WLAN, Bluetooth and 5.8 GHz/ISM band applications," Wireless Personal Communications, Vol. 109, No. 6, 2121-2131, 2019.
doi:10.1007/s11277-019-06671-w

3. Annou, A., S. Berhab, and F. Chebbara, "Metamaterial-fractal-defected ground structure concepts combining for highly miniaturized triple-band antenna design," Journal of Microwaves, Optoelectronics, and Electromagnetic, Vol. 109, No. 2, 21212131, 2019.
doi:

4. Mondir, A. and L. Setti, "Metamaterial inspired patch antenna loaded with an interdigital capacitor for wireless applications," IJMOT, Vol. 17, 375-384, 2022.

5. Sharma, N. and S. Bhatia, "Edge-coupled parasitic split ring resonator based metamaterial inspired low-cost diamond shaped fractal antenna for multiband wireless applications," International Journal of Electronics, Vol. 109, No. 2, 317-336, 2022.
doi:10.1080/00207217.2021.1908629

6. Chu, H., J. Chen, S. Luo, and Y. Guo, "A millimeter-wave filtering monopulse antenna array based on substrate integrated waveguide technology," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 1, 166-321, 2016.
doi:10.1109/TAP.2015.2497351

7. Chen, W. and Y. Lin, "Design of 2 x 2 microstrip patch array antenna for 5G C-band access point applications," IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Nagoya, Japan, 2018.

8. Chen, W. and Y. Lin, "Dual-band millimeter-wave microstrip patch array antenna for 5G smartphones," International Conference on Advanced Science and Engineering (ICOASE), 181-185, Zakho, Duhok, Iraq, 2019.

9. Kakkar, A., M. Nirdosh, R. Tripathy, and K. Singh, "Design and analysis of slotted antenna array for 5G application," 2017 Progress In Electromagnetics Research Symposium --- Fall (PIERS --- FALL), Singapore, 2017.

10. Bembarka, A., L. Setti, A. Tribak, and H. Tizyi, "Design of flower-shaped high-efficiency compact UWB antenna," ITM Web of Conferences, Vol. 48, 01011, 2022.
doi:10.1051/itmconf/20224801011

11. Bembarka, A., A. Tribak, H. Nachouane, and L. Setti, "Tunable monopole antenna in the sub-6 GHz spectrum for picocell base stations," Proceedings of the 13th International Conference on Intelligent Systems, Vol. 52, 1-5, 2022.

12. Anouar, M. and S. Larbi, "A new PIFA antenna for future mobile and wireless communication," E3S Web of Conferences, Vol. 351, No. 01085, 1-8, 2022.

13. Anouar, M. and S. Larbi, "PIFA Antenna for future mobile 5G," Proceedings of the 3rd International Conference on Smart City Applications, Vol. 31, 1-5, 2018.

14. Anouar, M. and S. Larbi, Array Antenna for Wireless Communication 5G, Vol. 31, 931-939, Springer International Publishing, 2018.

15. Mondir, A. and L. Setti, "Antenna with Defected Ground Structure for future mobile and Wireless communication 5G," Proceedings of the Third International Conference on Computing and Wireless Communication Systems, 2019.

16. Veselago, V., L. Braginsky, V. Shklover, and C. Hafner, "Negative refractive index materials," Journal of Computational and Theoretical Nanoscience, Vol. 3, No. 2, 189-218, 2006.
doi:10.1166/jctn.2006.3000

17. Jafari, F., M. Naderi, A. Hatami, and F. B. Zarrabi, "Microwave Jerusalem cross absorber by metamaterial split ring resonator load to obtain polarization independence with triple band application," AEU International Journal of Electronics and Communications, Vol. 101, 138-144, 2019.
doi:10.1016/j.aeue.2019.02.002

18. Islam, M. T., M. M. Islam, M. Samsuzzaman, and M. R. I. Faruque, "A negative index metamaterial-inspired UWB antenna with the integration of complementary SRR and CLS unit cells for microwave imaging sensor applications," Sensors, Vol. 15, No. 5, 11601-611627, 2015.
doi:10.3390/s150511601

19. Lizzi, L., R. Azaro, G. Oliveri, and A. Massa, "Multiband fractal antenna for a wireless communication system for emergency management," Journal of Electromagnetic Waves and Application, Vol. 26, No. 1, 1-11, 2013.
doi:10.1163/156939312798954865

20. Laila, D., R. Sujith, V. Shameena, A. Nijas, and A. Sujith, "Complementary split ring resonator-based microstrip antenna for compact wireless applications," Microwave and Optical Technology Letters, Vol. 55, No. 4, 814-816, 2012.
doi:10.1002/mop.27429

21. Hu, J. and J. Li, "Compact microstrip antennas using SRR structure ground plane," Microwave and Optical Technology Letters, Vol. 56, No. 1, 117-120, 2014.
doi:10.1002/mop.28023

22. Cao, W., B. Zhang, A. Liu, A. Yu, T. Guo, and Y. Wei, "Gain enhancement for broadband periodic end-fire antenna by using split ring resonator structures," IEEE Transaction on Antenna and Propagation, Vol. 60, No. 7, 3513-3516, 2012.
doi:10.1109/TAP.2012.2196959

23. Mishra, P., S. Pattnaik, and B. Dhaliwal, "Quare-shaped fractal antenna under metamaterial loaded condition for bandwidth enhancement," Progress In Electromagnetics Research C, Vol. 78, 3513-3516, 2017.

24. Kuhestania, H., M. Rahimi, Z. Mansouri, F. Zarrabi, and R. Ahmadian, "Design of compact patch antenna based on metamaterial for WiMAX applications with circular polarization," Microwave and Optical Technology Letters, Vol. 57, No. 2, 357-360, 2015.
doi:10.1002/mop.28846

25. Sharma, N. and S. Bhatia, "Split ring resonator based multiband hybrid fractal antennas for wireless applications," AEU International Journal of Electronics and Communications, Vol. 93, 39-52, 2018.
doi:10.1016/j.aeue.2018.05.035

26. Patel, S., K. Shah, and Y. Kosta, "Frequency-reconfigurable and high-gain metamaterial microstrip-radiating structure," Waves in Random and Complex Media, Vol. 29, No. 3, 523-539, 2019.
doi:10.1080/17455030.2018.1452309

27. Sharma, N. and S. Bhatia, "Metamaterial inspired fidget spinner shaped antenna based on parasitic split ring resonator for multi standard wireless applications," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 10, 1471-1490, 2020.
doi:10.1080/09205071.2019.1654412

28. Sharma, N. and S. Bhatia, "Edge-coupled parasitic split ring resonator based metamaterial inspired low-cost diamond shaped fractal antenna for multiband wireless applications," International Journal of Electronics, Vol. 109, No. 2, 317-336, 2022.
doi:10.1080/00207217.2021.1908629

29. Yousefi, L. and M. Ramahi, "New artificial magnetic materials based on fractal Hilbert curves," Proc. IWAT07s, 237-240, 2007.

30. Krzysztofik, J. and M. Ramahi, "Fractals in antennas and metamaterials applications," Fractal Analysis: Applications in Physics, Engineering and Technology, 953-978, 2017.

31. Brambila, F., "Fractals in Antennas and Metamaterials," IntechOpen, Rijeka, Croatia.

32. Krzysztofik, W. and T. Cao, "Metamaterials in application to improve antenna parameters," Metamaterials and Metasurfaces, Vol. 12, No. 2, 63-85, 2018.

33. Ramos, G. L., C. E. Capovilla, H. X. Araujo, C. G. Rego, I. R. Casella, and P. T. Pereira, "A novel FDTD/WP-PML/NUFFT algorithm applied to the design of a printed metamaterial enhanced ntenna," AEU-International Journal of Electronics and Communications, Vol. 70, No. 9, 1187-1191, 2016.

34. Cui, T., "Electromagnetic metamaterials: Recent advances on the theory, experiments, and applications," International Conference on Microwave Technology and Computational, 12-13, 2009.

35. Hrabar, S., D. Bonefacic, and D. Muha, "Application of wire-based metamaterials for antenna miniaturization," 3rd European Conference on Antennas and Propagation (EuCAP), 620-623, 2009.

36. Shelby, R. A. and D. R. Smith, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

37. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 3966, 3966-3984, 2000.
doi:10.1103/PhysRevLett.85.3966

38. Ren, Z., Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, "Leveraging of MEMS technologies for optical metamaterials applications," Fractal Analysis --- Applications in Physics, Engineering and Technology, Vol. 8, No. 3, 1900653-190066, 2020.

39. Krzysztofik, J. W. and D. R. Smith, "Fractals in antennas and metamaterials applications," Fractal Analysis --- Applications in Physics, Engineering and Technology, 978-953, 2017.

40. Mondir, A., L. Setti, and R. El Haffar, "Design analysis, and modeling using WCIP method of novel microstrip patch antenna for THz applications," Progress In Electromagnetics Research C, Vol. 125, 67-82, 2022.
doi:10.2528/PIERC22080903

41. Iqbal, A., B. Abdul, S. Amor, M. Nazih, I. Elfergani, and R. Jonathan, "Electromagnetic bandgap backed millimeter-wave MIMO antenna for wearable applications," IEEE Access, Vol. 7, No. 1, 111135-111144, 2019.
doi:10.1109/ACCESS.2019.2933913

42. Lin, W., R. Ziolkowski, and B. Thomas, "28 GHz compact omnidirectional circularly polarized antenna for device-to-device communications in the future 5G systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6904-6914, 2017.

43. Ullah, U., M. Al-Hasan, K. Slawomir, and I. Mabrouk, "Series-slot-fed circularly polarized multiple-input-multiple-output antenna array enabling circular polarization diversity for 5G 28 GHz indoor applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5607-5616, 2021.

44. Usman, M., K. Enis, J. Nasir, Z. Yuanwei, Y. Chao, and A. Zhu, "Compact SIW fed dual-port single element annular slot MIMO antenna for 5G mmWave applications," IEEE Access, Vol. 9, No. 9, 91995-92002, 2021.

45. Usman, M., K. Enis, J. Nasir, Z. Yuanwei, Y. Chao, and A. Zhu, "A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications," IEEE Access, Vol. 9, No. 9, 91995-92002, 2021.

46. Sharawi, M., S. Podilchak, M. Hussain, T. Mohamed, and A. Yahia, "Dielectric resonator based MIMO antenna system enabling millimetre-wave mobile devices," IET Microwaves, Antennas & Propagation, Vol. 11, No. 2, 287-293, 2017.

47. Alhaqbani, H., M. Bait-Suwailam, A. Aldhaeebi, and S. Almoneef, "Wideband diversity MIMO antenna design with hexagonal slots for 5G smart mobile terminals," Progress In Electromagnetics Research C, Vol. 120, No. 2, 105-117, 2022.

48. Bait-Suwailam, M., S. Almoneef, and S. Saeed, "Wideband MIMO antenna with compact decoupling structure for 5G wireless communication applications," Progress In Electromagnetics Research C, Vol. 120, No. 2, 117-125, 2021.