Vol. 122
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-12-13
Non-Singular Fast Terminal Sliding Mode Control Torsional Vibration Suppression for PM Synchronous Transmission System of EVs
By
Progress In Electromagnetics Research M, Vol. 122, 63-72, 2023
Abstract
To suppress the torsional vibration caused by the omission of couplings and dampers during flexible power transmission in the permanent magnet (PM) synchronous drive system of pure electric vehicles (EVs), this paper presents a non-singular fast terminal sliding mode control (NFTSMC) torsional vibration suppression strategy based on a sliding mode disturbance observer (SMDO). First, a PM synchronous drive system is simplified as a two-inertia model, and a mathematical model is established. Then, an NFTSMC controller of the load-side speed feedback is designed to suppress torsional vibration. Meanwhile, an SMDO is designed to estimate the load disturbance, and the estimated value is fed back to the controller to perform feedforward compensation. The robustness of the system is improved, and the effect of the load disturbance on the system is reduced. The results of the simulations and experiments show that the presented NFTSMC based on SMDO strategy has a strong torsional vibration suppression effect comparing to PI control and conventional sliding mode control.
Citation
Ning Jia, Kaihui Zhao, Yuying Lv, and Xiangfei Li, "Non-Singular Fast Terminal Sliding Mode Control Torsional Vibration Suppression for PM Synchronous Transmission System of EVs ," Progress In Electromagnetics Research M, Vol. 122, 63-72, 2023.
doi:10.2528/PIERM23062401
References

1. Ahn, Kukhyun, Emrah Bayrak, and Panos Papalambros, "Electric vehicle design optimization: integration of a high-fidelity interior-permanent-magnet motor model," IEEE Transactions on Vehicular Technology, Vol. 64, No. 9, 3870-3877, 2015.
doi:10.1109/TVT.2014.2363144

2. Zhang, Youguo, Tiancai Ma, and Xinxi Lu, "Mode optimization of the motor controller cover in a new energy vehicle and its vibration noise analysis," Journal of Vibration and Shock, Vol. 41, No. 14, 271-279, 2022.
doi:10.13465/j.cnki.jvs.2022.14.035

3. Zhuang, Yuanqiang, Yang Wu, Bangji Zhang, and Wen Hu, "Torque coordinated control of distributed drive electric vehicle based on nonlinear {mpc," Journal of Vibration and Shock, Vol. 40, No. 13, 239-246, 2021.
doi:10.13465/j.cnki.jvs.2021.13.030

4. Tang, Xiaolin, Xiaosong Hu, Wei Yang, and Haisheng Yu, "Novel torsional vibration modeling and assessment of a power-split hybrid electric vehicle equipped with a dual-mass flywheel," IEEE Transactions on Vehicular Technology, Vol. 67, No. 3, 1990-2000, 2018.
doi:10.1109/TVT.2017.2769084

5. Tang, Xiaolin, Wei Yang, Xiaosong Hu, and Dejiu Zhang, "A novel simplified model for torsional vibration analysis of a series-parallel hybrid electric vehicle," Mechanical Systems and Signal Processing, Vol. 85, 329-338, 2016.
doi:10.1016/j.ymssp.2016.08.020

6. Li, Wenli, Yu Lu, Dong Guo, Yongkang Liu, Xiaohui Shi, and Haiyan Yan, "Mechanical resonance analysis and suppression method of multi-inertia servo system considering time-varying meshing stiffness," Journal of Vibration and Shock, Vol. 40, No. 19, 164-171, 2021.
doi:10.13465/j.cnki.jvs.2021.19.021

7. Liu, Haoran, Yekuan Zhang, Xiaomei Li, and Shuang Liu, "Investigation and restraining of impact torsional vibration of rolling mill’s nonlinear drive system," Journal of Vibration and Shock, Vol. 29, No. 7, 179-183, 2010.
doi:10.13465/j.cnki.jvs.2021.19.021

8. Yang, Ying, Jieming Zhang, Guoqing Xu, Shuang Wang, and Fei Wang, "Application research onspeed negative feedback in mechanical resonance suppression in servo system," Transactions of China Electrotechnical Society, Vol. 33, No. 12, 5459-5469, 2018.
doi:10.19595/j.cnki.1000-6753.tces.171484

9. Yu, Jing, Yong Feng, and Jianfeng Zheng, "Suppression of mechanical resonance based on higher-order sliding mode and acceleration feedback," Control Theory and Applications, Vol. 26, No. 10, 1133-1136, 2009.

10. Girsang, Irving, Jaspreet Dhupia, Eduard Muljadi, Mohit Singh, and Jason Jonkman, "Modeling and control to mitigate resonant load in variable-speed wind turbine drivetrain," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 1, No. 4, 277-286, 2013.
doi:10.1109/JESTPE.2013.2284096

11. Fu, H., G. Tian, H. Chen, and Q. Chen, "A study on the torsional vibration control of motor-transmission integrated drive system," Automotive Engineering, Vol. 32, No. 7, 596-600, 2010.

12. Lv, Chen, Yahui Liu, Xiaosong Hu, Hongyan Guo, and Dongpu Cao, "Simultaneous observation of hybrid states for cyber-physical systems: a case study of electric vehicle powertrain," IEEE Transactions on Cybernetics, Vol. 48, No. 8, 2357-2367, 2018.
doi:10.1109/TCYB.2017.2738003

13. Feng, Yongkai, Shuzhen Ren, Qi Chen, and Han Zhao, "Dynamics simulation model of the transmission system for two-speed electric vehicle," Journal of Mechanical Transmission, Vol. 37, No. 10, 37-40, 2013.
doi:10.16578/j.issn.1004.2539.2013.10.035

14. Vadamalu, Raja and Christian Beidl, "Mpc for active torsional vibration reduction of hybrid electric powertrains," Ifac-papersonline, Vol. 49, 756-761, 2016.
doi:10.1016/j.ifacol.2016.08.110

15. Yu, Peng, Tong Zhang, Ling Sun, and Rong Guo, "Powertrain torsional vibration study of central-driven pure EV," Journal of Vibration and Shock, Vol. 34, No. 10, 121-127, 2015.
doi:10.13465/j.cnki.jvs.2015.10.021

16. Ge, Shuaishuai, Yufan Yang, Dong Guo, Zhigang Zhang, and Yuanyuan Yi, "Research on dynamic characteristics of electromechanical coupling of electric drive system of electric vehicle," Journal of Chongqing University of Technology (natural Science), Vol. 35, No. 5, 121-127, 2021.
doi:10.3969/j.issn.1674-8425(z).2021.05.007

17. Zhao, Kaihui, Wangke Dai, Ruirui Zhou, Aojie Leng, Wenchang Liu, Pengqi Qiu, Gang Huang, and Gongping Wu, "Novel model-free sliding mode control of permanent magnet synchronous motor based on extended sliding mode disturbance observer," Proceedings of The Csee, Vol. 42, No. 6, 2375-2386, 2022.
doi:10.13334/j.0258-8013.pcsee.210273

18. Zhao, Kaihui, Wenchang Liu, Zhicheng Liu, Lin Jia, and Gang Huang, "Model-free high sliding mode control for permanent magnet synchronous motor," Transactions of China Electrotechnical Society, Vol. 38, No. 6, 1472-1485, 2023.
doi:10.19595/j.cnki.1000-6753.tces.220615

19. Liu, Wei, Hongwen He, Fengchun Sun, and Hong Wang, "Optimal design of adaptive shaking vibration control for electric vehicles," Vehicle System Dynamics, Vol. 57, No. 1, 134-159, 2019.
doi:10.1080/00423114.2018.1447676

20. Xu, Bo, Lei Zhang, and Wei Ji, "Improved non-singular fast terminal sliding mode control with disturbance observer for {pmsm," IEEE Transactions on Transportation Electrification, Vol. PP, No. 4, 2753-2762, 2021.
doi:10.1109/TTE.2021.3083925

21. Zhao, Kaihui, Ruirui Zhou, Jinhua She, Changfan Zhang, Jing He, Gang Huang, and Xiangfei Li, "Demagnetization-fault reconstruction and tolerant-control for {pmsm,".

22. Zhao, Kaihui, Ning Jia, Jinhua She, Wangke Dai, Ruirui Zhou, Wenchang Liu, and Xiangfei Li, "Robust model-free super-twisting sliding-mode control method based on extended sliding-mode disturbance observer for {pmsm,".

23. Zhu, Qixin, Jiaqi Wang, Hongli Liu, Yonghong Zhu, and Fan Zhang, "Double vibration suppression of {pmsm,".

24. Wang, Xin and Huangqiu Zhu, "Vibration compensation control of bpmsm with dead-time effect based on adaptive neural network band-pass filter," IEEE Transactions on Power Electronics, Vol. 37, No. 6, 7145-7155, Jun. 2022.
doi:10.1109/tpel.2022.3141454

25. Yang, Kezhen, Yefa Hu, Huachun Wu, Jian Zhou, Weihu Xiao, and Nianxian Wang, "Harmonic vibration suppression of maglev rotor system under variable rotational speed without speed measurement," Mechatronics, Vol. 91, 11, May 2023.
doi:10.1016/j.mechatronics.2023.102956