Vol. 141
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-02-05
A Novel Approach Utilizing Graphene-Based Microfluidic Technology for Skin Cancer Detection
By
Progress In Electromagnetics Research C, Vol. 141, 89-100, 2024
Abstract
The introduction of microfluidics technology with graphene provides many advantages, such as improving the selectivity and sensitivity, achieving chemical and thermal stability, decreasing the size of devices, and impoving the cell and The biological response of the substance. The principal objective of this paper is to compare the constitutive parameters in order to develop graphene-based microfluidic sensors. The simulation results illustrate that the suggested sensor exhibits a strong ability in detecting normal skin tissue with an exellent sensitivity of 6.060 (THz/RIU) and to identify skin cancer with a notably significant sensitivity of 4.59 THz/RIU. Additionally, it shows considerable figure of merits, with values of 550.9 and 353.61 RIU, respectively. In conclusion, the simplicity, effectiveness, and adjustability of the proposed biosensor render it well-suited for breast tumor detection.
Citation
Marwa Rezeg, Aymen Hlali, Afef Oueslati, and Hassen Zairi, "A Novel Approach Utilizing Graphene-Based Microfluidic Technology for Skin Cancer Detection," Progress In Electromagnetics Research C, Vol. 141, 89-100, 2024.
doi:10.2528/PIERC23110402
References

1. Han, Kyungho, Truong Khang Nguyen, Ikmo Park, and Haewook Han, "Terahertz Yagi-Uda antenna for high input resistance," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 31, 441-454, 2010.        Google Scholar

2. Aloui, Radhoine, Hassen Zairi, Fermin Mira, Ignacio Llamas-Garro, and Sofien Mhatli, "Terahertz antenna based on graphene material for breast tumor detection," Sensing and Bio-Sensing Research, Vol. 38, 100511, 2022.        Google Scholar

3. Mallik, Sandipan, Prashant Kumar Singh, Gufran Ahmad, Shrabani Guhathakurata, S. S. Mahato, and Nabin Baran Manik, "High-sensitive terahertz biosensors," Advanced Materials for Future Terahertz Devices, Circuits and Systems, Vol. 727, 289-314, 2021.        Google Scholar

4. Puigmartí-Luis, Josep, "Microfluidic platforms: A mainstream technology for the preparation of crystals," Chemical Society Reviews, Vol. 43, No. 7, 2253-2271, 2014.
doi:10.1039/c3cs60372e        Google Scholar

5. Ma, Junping, Simon Ming-Yuen Lee, Changqing Yi, and Cheuk-Wing Li, "Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications --- A review," Lab on A Chip, Vol. 17, No. 2, 209-226, 2017.        Google Scholar

6. Weisenstein, Christian, Dominik Schaar, Anna Katharina Wigger, Heiko Schäfer-Eberwein, Anja K. Bosserhoff, and Peter Haring Bolívar, "Ultrasensitive THz biosensor for PCR-free cDNA detection based on frequency selective surfaces," Biomedical Optics Express, Vol. 11, No. 1, 448-460, 2020.
doi:10.1364/BOE.380818        Google Scholar

7. Richter, Merle, Yannik Loth, Anna Katharina Wigger, Daniela Nordhoff, Nicole Rachinger, Christian Weisenstein, Anja Katrin Bosserhoff, and Peter Haring Bolívar, "High specificity thz metamaterial-based biosensor for label-free transcription factor detection in melanoma diagnostics," Scientific Reports, Vol. 13, 2023.
doi:10.1038/s41598-022-27363-9        Google Scholar

8. Ahmadivand, Arash, Burak Gerislioglu, Zeinab Ramezani, Ajeet Kaushik, Pandiaraj Manickam, and S. Amir Ghoreishi, "Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins," Biosensors and Bioelectronics, Vol. 177, 112971, Apr. 2021.
doi:10.1016/j.bios.2021.112971        Google Scholar

9. Oueslati, Afef, Aymen Hlali, and Hassen Zairi, "Numerical investigation of a new sensor for blood glucose detection using an improved wave concept iterative process method," International Journal of Numerical Modelling --- Electronic Networks, Devices and Fields, Vol. 35, No. 5, e3001, 2022.
doi:10.1002/jnm.3001        Google Scholar

10. Amin, M., O. Siddiqui, H. Abutarboush, M. Farhat, and R. Ramzan, "A THz graphene metasurface for polarization selective virus sensing," Carbon, Vol. 176, 580-591, May 2021.
doi:10.1016/j.carbon.2021.02.051        Google Scholar

11. Chen, Yu-Fu, Hung-Wei Wu, Yong-Han Hong, and Hsin-Ying Lee, "40 GHz RF biosensor based on microwave coplanar waveguide transmission line for cancer cells (HepG2) dielectric characterization," Biosensors and Bioelectronics, Vol. 61, 417-421, Nov. 2014.
doi:10.1016/j.bios.2014.05.060        Google Scholar

12. Hsiao, Yu-Ping, Arvind Mukundan, Wei-Chung Chen, Ming-Tsang Wu, Shang-Chin Hsieh, and Hsiang-Chen Wang, "Design of a lab-on-chip for cancer cell detection through impedance and photoelectrochemical response analysis," Biosensors, Vol. 12, No. 6, 405, 2022.
doi:10.3390/bios12060405        Google Scholar

13. Ali, Liaquat, Mahmood Uddin Mohammed, Mahrukh Khan, Abdul Hamid Bin Yousuf, and Masud H. Chowdhury, "High-quality optical ring resonator-based biosensor for cancer detection," IEEE Sensors Journal, Vol. 20, No. 4, 1867-1875, Feb. 2020.
doi:10.1109/JSEN.2019.2950664        Google Scholar

14. Fang, Weihao, Xiaoqing Lv, Zhengtai Ma, Jian Liu, Weihua Pei, and Zhaoxin Geng, "A flexible terahertz metamaterial biosensor for cancer cell growth and migration detection," Micromachines, Vol. 13, No. 4, 631, 2022.
doi:10.3390/mi13040631        Google Scholar

15. Pumera, Martin, "Graphene in biosensing," Materials Today, Vol. 14, No. 7-8, 308-315, 2011.
doi:10.1016/S1369-7021(11)70160-2        Google Scholar

16. Hernaez, Miguel, "Applications of graphene-based materials in sensors," Sensors, Vol. 20, No. 11, 3196, 2020.
doi:10.3390/s20113196        Google Scholar

17. Peña-Bahamonde, Janire, Hang N. Nguyen, Sofia K. Fanourakis, and Debora F. Rodrigues, "Recent advances in graphene-based biosensor technology with applications in life sciences," Journal of Nanobiotechnology, Vol. 16, 75, 2018.
doi:10.1186/s12951-018-0400-z        Google Scholar

18. Hlali, Aymen, Afef Oueslati, and Hassen Zairi, "Numerical simulation of tunable terahertz graphene-based sensor for breast tumor detection," IEEE Sensors Journal, Vol. 21, No. 8, 9844-9851, 2021.        Google Scholar

19. Lotfi, Fariba, Nafiseh Sang-Nourpour, and Reza Kheradmand, "All-optical tunable plasmonic biosensor made of graphene and metamaterial," Plasmonics, Vol. 17, 799-809, 2022.        Google Scholar

20. Chen, Shiue-Luen, Chong-You Chen, Jason Chia-Hsun Hsieh, Zih-Yu Yu, Sheng-Jen Cheng, Kuan Yu Hsieh, Jia-Wei Yang, Priyank V. Kumar, Shien-Fong Lin, and Guan-Yu Chen, "Graphene oxide-based biosensors for liquid biopsies in cancer diagnosis," Nanomaterials, Vol. 9, No. 12, 1725, 2019.        Google Scholar

21. Pourmadadi, Mehrab, Homayoon Soleimani Dinani, Fatemeh Saeidi Tabar, Kajal Khassi, Sajjad Janfaza, Nishat Tasnim, and Mina Hoorfar, "Properties and applications of graphene and its derivatives in biosensors for cancer detection: A comprehensive review," Biosensors, Vol. 12, No. 5, 269, 2022.        Google Scholar

22. Ozkan-Ariksoysal, Dilsat, "Current perspectives in graphene oxide-based electrochemical biosensors for cancer diagnostics," Biosensors, Vol. 12, No. 8, 607, 2022.        Google Scholar

23. Rezeg, Marwa and Hassen Zairi, "A highly sensitive interdigital biosensor for cancer cells dielectric characterization using microwave frequencies," The Tenth International Conferenceon Sensor Device Technologies and Applications, 68-71, 2019.        Google Scholar

24. Pourmadadi, Mehrab, Homayoon Soleimani Dinani, Fatemeh Saeidi Tabar, Kajal Khassi, Sajjad Janfaza, Nishat Tasnim, and Mina Hoorfar, "Properties and applications of graphene and its derivatives in biosensors for cancer detection: A comprehensive review," Biosensors, Vol. 12, No. 5, 269, 2022.        Google Scholar

25. Yang, Yuanyuan, Eka Noviana, Michael P. Nguyen, Brian J. Geiss, David S. Dandy, and Charles S. Henry, "Paper-based microfluidic devices: Emerging themes and applications," Analytical Chemistry, Vol. 89, No. 1, 71-91, Jan. 2017.
doi:10.1021/acs.analchem.6b04581        Google Scholar

26. Syama, S. and P. V. Mohanan, "Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application," International Journal of Biological Macromolecules, Vol. 86, 546-555, May 2016.
doi:10.1016/j.ijbiomac.2016.01.116        Google Scholar

27. Kazemi, Amir Hossein and Arash Mokhtari, "Graphene-based patch antenna tunable in the three atmospheric windows," Optik, Vol. 142, 475-482, 2017.
doi:10.1016/j.ijleo.2017.05.113        Google Scholar

28. Krid, Hamza Ben, Zied Houaneb, and Hassen Zairi, "Reconfigurable rectangular ring antenna based on graphene for terahertz applications," 2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 695-698, 2022.

29. Hosseininejad, Seyed Ehsan and Nader Komjani, "Waveguide-fed tunable terahertz antenna based on hybrid graphene-metal structure," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 3787-3793, 2016.        Google Scholar

30. Hu, Xin, Gaiqi Xu, Long Wen, Huacun Wang, Yuncheng Zhao, Yaxin Zhang, David R. S. Cumming, and Qin Chen, "Metamaterial absorber integrated microfluidic terahertz sensors," Laser & Photonics Reviews, Vol. 10, No. 6, 962-969, 2016.        Google Scholar

31. Nakao, M., "Sensing microscopy," Encyclopedia of Food Microbiology, 702-710, 2014.
doi:10.1016/B978-0-12-384730-0.00218-4        Google Scholar

32. Sasaki, Kensuke, Emily Porter, Essam A. Rashed, Lourdes Farrugia, and Gernot Schmid, "Measurement and image-based estimation of dielectric properties of biological tissues --- Past, present, and future," Physics in Medicine & Biology, Vol. 67, No. 14, 2022.        Google Scholar

33. Nikitkina, Angelina I., et al. "Terahertz radiation and the skin: A review," Journal of Biomedical Optics, Vol. 26, No. 4, 2021.        Google Scholar

34. Zaitsev, K. I., N. V. Chernomyrdin, K. G. Kudrin, I. V. Reshetov, and S. O. Yurchenko, "Terahertz spectroscopy of pigmentary skin nevi in vivo," Optics and Spectroscopy, Vol. 119, 404-410, 2015.        Google Scholar

35. Zaytsev, Kirill I., Konstantin G. Kudrin, Valeriy E. Karasik, Igor V. Reshetov, and Stanislav O. Yurchenko, "In vivo terahertz spectroscopy of pigmentary skin nevi: Pilot study of non-invasive early diagnosis of dysplasia," Applied Physics Letters, Vol. 106, No. 5, 053702, 2015.        Google Scholar

36. Ali, Liaquat, Mahmood Uddin Mohammed, Mahrukh Khan, Abdul Hamid Bin Yousuf, and Masud H. Chowdhury, "High-quality optical ring resonator-based biosensor for cancer detection," IEEE Sensors Journal, Vol. 20, No. 4, 1867-1875, 2020.        Google Scholar

37. Keshavarz, Afsaneh and Zohreh Vafapour, "Sensing avian influenza viruses using terahertz metamaterial reflector," IEEE Sensors Journal, Vol. 19, No. 13, 5161-5166, 2019.        Google Scholar

38. Veeraselvam, Aruna, Gulam Nabi Alsath Mohammed, Kirubaveni Savarimuthu, and Pancha Durga Vijayaraman, "An ultra-thin multiband refractive index-based carcinoma sensor using THz radiation," IEEE Sensors Journal, Vol. 22, No. 3, 2045-2052, 2022.        Google Scholar

39. Azab, Mohammad Y., Mohamed Farhat O. Hameed, Abed M. Nasr, and S. S. A. Obayya, "Highly sensitive metamaterial biosensor for cancer early detection," IEEE Sensors Journal, Vol. 21, No. 6, 7748-7755, 2021.        Google Scholar

40. Chen, Chia-Yun, Yu-Hang Yang, and Ta-Jen Yen, "Unveiling the electromagnetic responses of fourfold symmetric metamaterials and their terahertz sensing capability," Applied Physics Express, Vol. 6, No. 2, 022002, 2013.        Google Scholar

41. Chen, Xu and Wenhui Fan, "Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon," Scientific Reports, Vol. 7, No. 1, 2376-2382, 2017.        Google Scholar

42. Wang, Ben-Xin, Gui-Zhen Wang, and Tian Sang, "Simple design of novel triple-band terahertz metamaterial absorber for sensing application," Journal of Physics D: Applied Physics, Vol. 49, No. 16, 165307, 2016.        Google Scholar

43. Zhang, Yuping, Tongtong Li, Beibei Zeng, Huiyun Zhang, Huanhuan Lv, Xiaoyan Huang, Weili Zhang, and Abul K. Azad, "A graphene based tunable terahertz sensor with double Fano resonances," Nanoscale, Vol. 7, No. 29, 12682-12688, 2015.        Google Scholar