Vol. 133
Latest Volume
All Volumes
PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-04-12
Towards Biosensing and Bioimaging Applications of Gradient Surface Electromagnetic Waves
By
Progress In Electromagnetics Research M, Vol. 133, 43-50, 2025
Abstract
Recently it was demonstrated that a new type of radio frequency surface electromagnetic wave appears on the surface of a lossy conductive medium in the presence of dielectric permittivity gradients. We present theoretical and experimental study of gradient surface electromagnetic wave (GSEW) excitation and propagation on such conductive surfaces as various metals, water, and human skin. The geometry of our experiments is designed to emulate various potential biosensing and bioimaging applications of GSEW. We demonstrate the capability of GSEW-based techniques to detect the presence of metallic and dielectric objects underwater in close proximity to the water surface. Since the dielectric properties of the human body are similar to those of water, we anticipate that the developed GSEW technique may supplement x-ray and ultrasound-based biosensing and bioimaging.
Citation
Igor I. Smolyaninov, and Quirino Balzano, "Towards Biosensing and Bioimaging Applications of Gradient Surface Electromagnetic Waves," Progress In Electromagnetics Research M, Vol. 133, 43-50, 2025.
doi:10.2528/PIERM25022004
References

1. Smolyaninov, Igor I., "Surface electromagnetic waves at gradual interfaces between lossy media," Progress In Electromagnetics Research, Vol. 170, 177-186, 2021.

2. Zayats, Anatoly V., Igor I. Smolyaninov, and Alexei A. Maradudin, "Nano-optics of surface plasmon polaritons," Physics Reports, Vol. 408, No. 3-4, 131-314, 2005.

3. Smolyaninov, Igor I., Quirino Balzano, and Alexander B. Kozyrev, "Surface electromagnetic waves at seawater-air and seawater-seafloor interfaces," IEEE Open Journal of Antennas and Propagation, Vol. 4, 51-59, 2022.

4. Smolyaninov, Igor I., "Surface electromagnetic waves in lossy conductive media: Tutorial," Journal of the Optical Society of America B, Vol. 39, No. 7, 1894-1901, 2022.

5. Michalski, K. A. and J. R. Mosig, "The Sommerfeld half-space problem revisited: From radio frequencies and Zenneck waves to visible light and Fano modes," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 1, 1-42, 2016.

6. Kukushkin, Aleksandr V., "On the existence and physical meaning of the Zenneck wave," Physics-Uspekhi, Vol. 52, No. 7, 755, 2009.

7. Smolyaninov, Igor I., Quirino Balzano, and Dendy Young, "Surface wave-based radio communication through conductive enclosures," Progress In Electromagnetics Research M, Vol. 85, 21-28, 2019.

8. Akowuah, E. K., T. Gorman, and S. Haxha, "Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration," Optics Express, Vol. 17, No. 26, 23511-23521, 2009.

9. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, No. 6668, 667-669, 1998.

10. Smolyaninov, Igor I., Quirino Balzano, Mark Barry, and Dendy Young, "Superlensing enables radio communication and imaging underwater," Scientific Reports, Vol. 13, No. 1, 18333, 2023.

11. Zou, Dandan, Chensheng Tu, and Chunmei Cui, "Helical streamers guided by surface electromagnetic standing waves," Plasma Science and Technology, Vol. 25, No. 7, 072001, 2023.

12. Mejía-Salazar, J. R. and Osvaldo N. Oliveira Jr., "Plasmonic biosensing," Chemical Reviews, Vol. 118, No. 20, 10617-10625, 2018.

13. Li, Ming, Scott K. Cushing, and Nianqiang Wu, "Plasmon-enhanced optical sensors: A review," Analyst, Vol. 140, No. 2, 386-406, 2015.