Vol. 29
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-05-12
An Improved L1-SVD Algorithm Based on Noise Subspace for DOA Estimation
By
Progress In Electromagnetics Research C, Vol. 29, 109-122, 2012
Abstract
In this paper, an improved L1-SVD algorithm based on noise subspace is presented for direction of arrival (DOA) estimation using the reweighted L1 minimization. In the proposed method, the weighted vector is obtained by utilizing the orthogonality between the noise subspace and the subspace spanned by the array manifold matrix. The presented algorithm banishes the nonzero entries whose indices are inside of the row support of the jointly sparse signals by smaller weights and the other entries whose indices are more likely to be outside of the row support of the jointly sparse signals by larger weights. Therefore, the sparsity at the real signal locations can be enhanced by using the presented method. The proposed approach offers a good deal of merits over other DOA techniques. It not only increases the robustness to noise, but also enhances resolution in DOA estimation. Furthermore, it does not require an exact initialization. Simulation results show that the presented algorithm has better performance than the existing algorithms, such as MUSIC, L1-SVD algorithm.
Citation
Fulai Liu Lu Peng Ming Wei Pingping Chen Shouming Guo , "An Improved L1-SVD Algorithm Based on Noise Subspace for DOA Estimation," Progress In Electromagnetics Research C, Vol. 29, 109-122, 2012.
doi:10.2528/PIERC12021203
http://www.jpier.org/PIERC/pier.php?paper=12021203
References

1. Liu, , F. L., , J. Wang, C. Y. Sun, and R. Du, , "Robust MVDR beamformer for nulling level control via multi-parametric quadratic programming," Progress In Electromagnetics Research C, Vol. 20, 239-254, 2011..

2. Yang, , P., F. Yang, and Z. P. Nie, "DOA estimation with sub-array divided technique and interpolated esprit algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010..
doi:10.2528/PIER10011904

3. Liang, , J., D. Liu, and , "Two L-shaped array-based 2-D DOAs estimation in the presence of mutual coupling," Progress In Electromagnetics Research,, Vol. 112, 273-298, 2011.

4. Zaharis, Z. D. and T. V. Yioultsis, Z. D. , T. V. Yioultsis, and , "A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated boolean PSO," Progress In Electromagnetics Research , Vol. 117, 165-179, 2011.

5. Liu, , F. L., , J. K. Wang, R. Y. Du, L. Peng, and P. P. Chen, "A second-order cone programming approach for robust downlink beamforming with power control in cognitive radio networks ," Progress In Electromagnetics Research M, Vol. 18, 221-231, 2011.

6. Mallipeddi, , R., , J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "A differential evolution approach for robust adaptive beamforming based on joint estimation of look direction and array geometry," Progress In Electromagnetics Research, , Vol. 119, 381-394, 2011.
doi:10.2528/PIER11052205

7. Capon, , J., , "High resolution frequency-wavenumber spectrum analysis ," Proc. IEEE, Vol. 57, No. 8, 1408-1418, 1969..
doi:10.1109/PROC.1969.7278

8. Schmidt, , R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag., Vol. 34, No. 3, 276-280, 1986..
doi:10.1109/TAP.1986.1143830

9. Bencheikh, , M. L. , Y. Wang, and , "Combined esprit-rootmusic for DOA-DOD estimation in polarimetric bistatic MIMO radar," Progress In Electromagnetics Research Letters,, Vol. 22, 109-117, 2011.

10. Sacchi, , M. D., , T. J. Ulrych, and C. J. Walker, "Interpolation and extrapolation using a high-resolution discrete fourier transform," IEEE Trans. Signal Process., Vol. 46, No. 1, 31-38, 1998.
doi:10.1109/78.651165

11. Jeffs, , B. D., , "Sparse inverse solution methods for signal and image processing applications," Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,, Vol. 3, 1885-1888, 1998..

12. Gorodnitsky, , I. F. , B. D. Rao, and , "Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm," IEEE Trans. Signal Process., Vol. 45, No. 3, 600-616, 1997.

13. Fuchs, J. J., , "On the application of the global matched flter to DOA estimation with uniform circular arrays," IEEE Trans. Signal Process., Vol. 49, No. 4, 702-709, , 2001.

14. Rao, , B. D. , K. Kreutz-Delgado, and , "An affne scaling methodology for best basis selection," IEEE Trans. Signal Process., Vol. 47, No. 1, 187-200, 1999.

15. Malioutov, , D. M., , M. Cetin, and A. S. Willsky, , "A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Trans. Signal Process., Vol. 53, No. 8, 3010-3022, 2005.

16. Cands, E. J., , M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted L1 minimization," Journal of Fourier Analysis and Applications, , Vol. 14, No. 5--6, 877-905, 2008.

17., "Wipf, D. and S. Nagarajan, \Iterative reweighted L1 and L2 methods for finding sparse solution," IEEE Journal of Selected Topic in Signal Processing,, Vol. 4, No. 2, 317-329, , 2010.

18. Needell, , D., "Noisy signal recovery via iterative reweighted L1 minimization," 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, 113-117, 2009.

19. Cands, , E., , J. Romberg, and T. Tao, , "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, No. 2, 489-509, 2006.

20. Donoho, D. L. and M. Elad, "Optimally sparse representation in general (nonorthogonal) dictionaries via L1 minimization," Proc. Natl, Acad. Sci. USA 100, 2197-2202, 2003.

21. Donoho, , D. L. , X. Huo, and , "Uncertainty principles and ideal atomic decomposition," IEEE Transactions on Information Theory, Vol. 47, No. 7, 2845-2862, 2001.

22. Krim, , H. , M. Viberg, and , "Two decades of array signal processing research: The parametric approach," IEEE Signal Process. Mag.,, Vol. 13, No. 7, 67-94, 1996.