1. Macedo, A. D. F., "Analysis of chaff cloud RCS applying fuzzy calculus," SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings, Vol. 2, 724-728, 1997. Google Scholar
2. Fu, X., H. Yan, C. Jiang, and M. Gao, "Chaff jamming recognition for anti-vessel end-guidance radars," Proceedings of the 2009 2nd International Congress on Image and Signal Processing, CISP'09, Article No. 5304639, 2009. Google Scholar
3. Jia, X. and G. R. Guo, "Anti-chaff jamming method for anti-ship missile terminal guidance radar," Shipboard Electronic Countermeasure, Vol. 3, No. 3, 21-22, 1998. Google Scholar
4. Fu, H. W., S. W. Zhang, and X. M. Li, "A recognition method of chaff jamming based on gray principle," Electronics Optics & Control, Vol. 10, No. 3, 42-44, 2003. Google Scholar
5. Shang, W., B. X. Chen, and L. F. Jiang, "An anti-chaff jamming method based on the effect of spectral expansion," Guidance & Fuze, Vol. 27, No. 3, 5-10, 2006. Google Scholar
6. Shao, X. H., H. Du, and J. H. Xue, "A recognition method depended on enlarge the difference between target and chaff," International Conference on Microwave and Millimeter Wave Technology, ICMMT'07, Article No. 4266269, 2007. Google Scholar
7. Chua, M. Y. and V. C. Koo, "FPGA-based chirp generator for high resolution UAV SAR," Progress In Electromagnetics Research, Vol. 99, 71-88, 2009.
doi:10.2528/PIER09100301 Google Scholar
8. Chen, J., Principles of Radar Passive Jamming, 161-164, National Defense Industry Press, Beijing, 2009.
9. Wicks, M. C., E. L. Mokole, S. D. Blunt, R. S. Schneible, and V. J. Amuso , Principles of Waveform. Diversity and Design, Chap. 1, Scitech Publishing Inc., Mendham, New Jersey, 2010.
10. Farina, A. and F. A. Studer, "Detection with high resolution radar: Great promise, big challenge," Journal of Systems Engineering and Electronics, Vol. 3, No. 1, 21-34, 1992. Google Scholar
11. Wehner, D. R., High-resolution Radar, Chap. 4-Chap. 5, Artech House, Boston, 1995.
12. Tao, R., N. Zhang, and Y. Wang, "Analyzing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar," IET Radar Sonar and Navigation, Vol. 5, No. 1, 12-22, 2011.
doi:10.1049/iet-rsn.2009.0265 Google Scholar
13. Liu, B. and W. Chang, "Range alignment and motion compensation for missile-borne frequency stepped chirp radar," Progress In Electromagnetics Research, Vol. 136, 523-542, 2013. Google Scholar
14. Calvo-Gallego, J. and F. Perez-Martinez, "Simple traffic surveillance system based on range-Doppler radar images," Progress In Electromagnetics Research, Vol. 125, 343-364, 2012.
doi:10.2528/PIER12011809 Google Scholar
15. Xia, G. F., H. C. Zhu, and H. Y. Su, "Research on the anti-chaff-interference for modulated stepped frequency terminal guided radar," Radar Science and Technology, Vol. 7, No. 1, 14-17, 2009. Google Scholar
16. Liu, B. and W. Chang, "A novel range-spread target detection approach for frequency stepped chirp radar," Progress In Electromagnetics Research, Vol. 131, 275-292, 2012. Google Scholar
17. Xi, L., "Auto focusing of ISAR images based on entropy minimization," IEEE Trans. Aerospace Electron. Syst., Vol. 35, No. 4, 1240-1252, 1999.
doi:10.1109/7.805442 Google Scholar
18. Xu, S., P. Shui, and X. Yan, "CFAR detection of range-spread target in white Gaussian noise using waveform entropy," Electronics Letters, Vol. 46, No. 9, 647-649, 2010.
doi:10.1049/el.2010.3329 Google Scholar
19. Chen, X. R. and Z. G. Zheng, Modern Mathematics Handbook: Stochastic Mathematics, 38-46, Huazhong University of Science and Technology Press, 1999.