Vol. 75
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-07-14
A Coding Metasurface with Properties of Absorption and Diffusion for RCS Reduction
By
Progress In Electromagnetics Research C, Vol. 75, 181-191, 2017
Abstract
A low-radar cross section (RCS) coding metasurface (MS) with properties of absorption and diffusion for both normal and oblique incidences is proposed in this paper. The coding MS is composed of a miniaturized perfect metamaterial absorber (PMA) and a wideband artificial magnetic conductor (AMC) in a shared aperture. In addition, to avoid strong scattering energy appearing at specific directions, genetic algorithm (GA) is adopted to search the optimal layout of the two MS elements. Simulated and experimental results confirm the properties of coding MS and indicate the 6-dB RCS reduction bands under TE- and TM-polarized normal incident that waves are 6.28GHz-9.16GHz and 6.33GHz-9.41GHz, respectively.
Citation
Tong Han Xiang-Yu Cao Jun Gao Yan-Long Zhao Yi Zhao , "A Coding Metasurface with Properties of Absorption and Diffusion for RCS Reduction," Progress In Electromagnetics Research C, Vol. 75, 181-191, 2017.
doi:10.2528/PIERC17041201
http://www.jpier.org/PIERC/pier.php?paper=17041201
References

1. Minyeong, Y., H. K. Kim, and S. Lim, "Angular- and polarization-insensitive metamaterial absorber using subwavelength unit cell in multilayer technology," IEEE Antennas Wireless Propag. Lett., Vol. 15, 414-417, 2016.
doi:10.1109/LAWP.2015.2448720

2. Liu, Y., K. Li, Y. T. Jia, Y. W. Hao, S. X. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 326-331, 2016.
doi:10.1109/TAP.2015.2497352

3. Han, T., X. Y. Cao, J. Gao, and Y. Zhao, "Design of shared aperture metasurface and its application on improving radiation and scattering performance of the waveguide slot antenna," Journal of Air Force Engineering University, Vol. 18, No. 3, 50-56, 2017 (in Chinese).

4. Li, H. P., G. M. Wang, J. G. Liang, and X. J. Gao, "Wideband multifunctional metasurface for polarization conversion and gain enhancement," Progress In Electromagnetics Research, Vol. 155, 115-125, 2016.
doi:10.2528/PIER16012011

5. Yang, W. C., K. W. Tam, W. W. Choi, W. Q. Che, and H. T. Hui, "Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6206-6216, 2014.
doi:10.1109/TAP.2014.2361130

6. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

7. Ustun, K. and G. T. Sayan, "Wideband long wave infrared metamaterial absorbers based on silicon nitride," J. Appl. Phys., Vol. 120, 203101, 2016.
doi:10.1063/1.4968014

8. Zuo, W. Q., Y. Yang, X. X. He, D. W. Zhan, and Q. F. Zhang, "A miniaturized metamaterial absorber for ultrahigh-frequency RFID system," IEEE Antennas Wireless Propag. Lett., Vol. 16, 329-332, 2017.
doi:10.1109/LAWP.2016.2574885

9. Ni, X. J., N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Broadband Light bending with plasmonic nanoantennas," Science, Vol. 335, 427, 2012.
doi:10.1126/science.1214686

10. Kandasamy, K., B. Majumder, J. Mukherjee, and K. P. Ray, "Low-RCS and polarizationreconfigurable antenna using cross-slot-based metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1638-1641, 2015.
doi:10.1109/LAWP.2015.2415585

11. Chen, W. G., C. A. Balanis, and C. R. Birtcher, "Checkerboard EBG surfaces for wideband radar cross section reduction," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2636-2645, 2015.
doi:10.1109/TAP.2015.2414440

12. Song, Y. C., J. Ding, C. J. Guo, Y. H. Ren, and J. K. Zhang, "Ultra-broadband backscatter radar cross section reduction based on polarization-insensitive metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 15, 329-331, 2016.
doi:10.1109/LAWP.2015.2443853

13. Paquay, M., J. C. Iriarte, and Ederra, "Thin AMC structure for radar cross-section reduction," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3630-3638, 2007.
doi:10.1109/TAP.2007.910306

14. Galarregui, J. C. I., A. T. Pereda, J. L. M. Falc´on, I. Ederra, R. Gonzalo, and P. Maagt, "Broadband radar cross-section reduction using AMC technology," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 6136-6143, 2013.
doi:10.1109/TAP.2013.2282915

15. Cui, T. J., M. Q. Qi, X.Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Applications, Vol. 3, No. 10, e218, 2014.
doi:10.1038/lsa.2014.99

16. Zhao, Y., et al., "Broadband diffusion metasurface based on a single anisotropic element and optimized by the simulated annealing algorithm," Scientific Reports, Vol. 6, 23896, 2016.
doi:10.1038/srep23896

17. Yan, X., et al., "Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface," Optics Express, Vol. 23, No. 22, 29128-29137, 2015.
doi:10.1364/OE.23.029128

18. Zhang, H., Y. Lu, J. X. Su, Z. R. Li, J. B. Liu, and Y. Q. Yang, "Coding diffusion metasurface for ultra-wideband RCS reduction," Electronics Letters, Vol. 53, No. 3, 187-189, 2017.
doi:10.1049/el.2016.3956

19. Zhao, J., et al., "Controlling the bandwidth of terahertz low-scattering metasurfaces," Adv. Optical Mater., Vol. 4, No. 11, 1773-1779, 2016.
doi:10.1002/adom.201600202

20. Li, W. Q., X. Y. Gao, J. Cao, Q. Yang, Y. Zhao, Z. Zhang, and C. H. Zhang, "A kind of shared aperture radar absorbing material with absorber and phase cancellation characteristics," Acta Phys. Sin., Vol. 63, No. 12, 124101, 2014 (in Chinese).

21. Sievenpiper, D., L. J. Zhang, R. F. J. Broas, N. G. Alex’opolous, and E. Yablonovitch, "Highimpedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

22. Vinoy, K. J., J. K. Abraham, and V. K. Varadan, "On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves," IEEE Trans. Antennas Propag., Vol. 51, 2296-2303, 2003.
doi:10.1109/TAP.2003.816352

23. Wang, K., J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, "Broadband and broad-angle lowscattering metasurface based on hybrid optimization algorithm," Scientific Reports, Vol. 4, 5935, 2014.