Vol. 75

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-07-14

A Coding Metasurface with Properties of Absorption and Diffusion for RCS Reduction

By Tong Han, Xiang-Yu Cao, Jun Gao, Yan-Long Zhao, and Yi Zhao
Progress In Electromagnetics Research C, Vol. 75, 181-191, 2017
doi:10.2528/PIERC17041201

Abstract

A low-radar cross section (RCS) coding metasurface (MS) with properties of absorption and diffusion for both normal and oblique incidences is proposed in this paper. The coding MS is composed of a miniaturized perfect metamaterial absorber (PMA) and a wideband artificial magnetic conductor (AMC) in a shared aperture. In addition, to avoid strong scattering energy appearing at specific directions, genetic algorithm (GA) is adopted to search the optimal layout of the two MS elements. Simulated and experimental results confirm the properties of coding MS and indicate the 6-dB RCS reduction bands under TE- and TM-polarized normal incident that waves are 6.28GHz-9.16GHz and 6.33GHz-9.41GHz, respectively.

Citation


Tong Han, Xiang-Yu Cao, Jun Gao, Yan-Long Zhao, and Yi Zhao, "A Coding Metasurface with Properties of Absorption and Diffusion for RCS Reduction," Progress In Electromagnetics Research C, Vol. 75, 181-191, 2017.
doi:10.2528/PIERC17041201
http://www.jpier.org/PIERC/pier.php?paper=17041201

References


    1. Minyeong, Y., H. K. Kim, and S. Lim, "Angular- and polarization-insensitive metamaterial absorber using subwavelength unit cell in multilayer technology," IEEE Antennas Wireless Propag. Lett., Vol. 15, 414-417, 2016.
    doi:10.1109/LAWP.2015.2448720

    2. Liu, Y., K. Li, Y. T. Jia, Y. W. Hao, S. X. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 326-331, 2016.
    doi:10.1109/TAP.2015.2497352

    3. Han, T., X. Y. Cao, J. Gao, and Y. Zhao, "Design of shared aperture metasurface and its application on improving radiation and scattering performance of the waveguide slot antenna," Journal of Air Force Engineering University, Vol. 18, No. 3, 50-56, 2017 (in Chinese).

    4. Li, H. P., G. M. Wang, J. G. Liang, and X. J. Gao, "Wideband multifunctional metasurface for polarization conversion and gain enhancement," Progress In Electromagnetics Research, Vol. 155, 115-125, 2016.
    doi:10.2528/PIER16012011

    5. Yang, W. C., K. W. Tam, W. W. Choi, W. Q. Che, and H. T. Hui, "Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6206-6216, 2014.
    doi:10.1109/TAP.2014.2361130

    6. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    7. Ustun, K. and G. T. Sayan, "Wideband long wave infrared metamaterial absorbers based on silicon nitride," J. Appl. Phys., Vol. 120, 203101, 2016.
    doi:10.1063/1.4968014

    8. Zuo, W. Q., Y. Yang, X. X. He, D. W. Zhan, and Q. F. Zhang, "A miniaturized metamaterial absorber for ultrahigh-frequency RFID system," IEEE Antennas Wireless Propag. Lett., Vol. 16, 329-332, 2017.
    doi:10.1109/LAWP.2016.2574885

    9. Ni, X. J., N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Broadband Light bending with plasmonic nanoantennas," Science, Vol. 335, 427, 2012.
    doi:10.1126/science.1214686

    10. Kandasamy, K., B. Majumder, J. Mukherjee, and K. P. Ray, "Low-RCS and polarizationreconfigurable antenna using cross-slot-based metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1638-1641, 2015.
    doi:10.1109/LAWP.2015.2415585

    11. Chen, W. G., C. A. Balanis, and C. R. Birtcher, "Checkerboard EBG surfaces for wideband radar cross section reduction," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2636-2645, 2015.
    doi:10.1109/TAP.2015.2414440

    12. Song, Y. C., J. Ding, C. J. Guo, Y. H. Ren, and J. K. Zhang, "Ultra-broadband backscatter radar cross section reduction based on polarization-insensitive metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 15, 329-331, 2016.
    doi:10.1109/LAWP.2015.2443853

    13. Paquay, M., J. C. Iriarte, and Ederra, "Thin AMC structure for radar cross-section reduction," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3630-3638, 2007.
    doi:10.1109/TAP.2007.910306

    14. Galarregui, J. C. I., A. T. Pereda, J. L. M. Falc´on, I. Ederra, R. Gonzalo, and P. Maagt, "Broadband radar cross-section reduction using AMC technology," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 6136-6143, 2013.
    doi:10.1109/TAP.2013.2282915

    15. Cui, T. J., M. Q. Qi, X.Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Applications, Vol. 3, No. 10, e218, 2014.
    doi:10.1038/lsa.2014.99

    16. Zhao, Y., et al., "Broadband diffusion metasurface based on a single anisotropic element and optimized by the simulated annealing algorithm," Scientific Reports, Vol. 6, 23896, 2016.
    doi:10.1038/srep23896

    17. Yan, X., et al., "Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface," Optics Express, Vol. 23, No. 22, 29128-29137, 2015.
    doi:10.1364/OE.23.029128

    18. Zhang, H., Y. Lu, J. X. Su, Z. R. Li, J. B. Liu, and Y. Q. Yang, "Coding diffusion metasurface for ultra-wideband RCS reduction," Electronics Letters, Vol. 53, No. 3, 187-189, 2017.
    doi:10.1049/el.2016.3956

    19. Zhao, J., et al., "Controlling the bandwidth of terahertz low-scattering metasurfaces," Adv. Optical Mater., Vol. 4, No. 11, 1773-1779, 2016.
    doi:10.1002/adom.201600202

    20. Li, W. Q., X. Y. Gao, J. Cao, Q. Yang, Y. Zhao, Z. Zhang, and C. H. Zhang, "A kind of shared aperture radar absorbing material with absorber and phase cancellation characteristics," Acta Phys. Sin., Vol. 63, No. 12, 124101, 2014 (in Chinese).

    21. Sievenpiper, D., L. J. Zhang, R. F. J. Broas, N. G. Alex’opolous, and E. Yablonovitch, "Highimpedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 11, 2059-2074, 1999.
    doi:10.1109/22.798001

    22. Vinoy, K. J., J. K. Abraham, and V. K. Varadan, "On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves," IEEE Trans. Antennas Propag., Vol. 51, 2296-2303, 2003.
    doi:10.1109/TAP.2003.816352

    23. Wang, K., J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, "Broadband and broad-angle lowscattering metasurface based on hybrid optimization algorithm," Scientific Reports, Vol. 4, 5935, 2014.