Vol. 75

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

A Coding Metasurface with Properties of Absorption and Diffusion for RCS Reduction

By Tong Han, Xiang-Yu Cao, Jun Gao, Yan-Long Zhao, and Yi Zhao
Progress In Electromagnetics Research C, Vol. 75, 181-191, 2017


A low-radar cross section (RCS) coding metasurface (MS) with properties of absorption and diffusion for both normal and oblique incidences is proposed in this paper. The coding MS is composed of a miniaturized perfect metamaterial absorber (PMA) and a wideband artificial magnetic conductor (AMC) in a shared aperture. In addition, to avoid strong scattering energy appearing at specific directions, genetic algorithm (GA) is adopted to search the optimal layout of the two MS elements. Simulated and experimental results confirm the properties of coding MS and indicate the 6-dB RCS reduction bands under TE- and TM-polarized normal incident that waves are 6.28GHz-9.16GHz and 6.33GHz-9.41GHz, respectively.


Tong Han, Xiang-Yu Cao, Jun Gao, Yan-Long Zhao, and Yi Zhao, "A Coding Metasurface with Properties of Absorption and Diffusion for RCS Reduction," Progress In Electromagnetics Research C, Vol. 75, 181-191, 2017.


    1. Minyeong, Y., H. K. Kim, and S. Lim, "Angular- and polarization-insensitive metamaterial absorber using subwavelength unit cell in multilayer technology," IEEE Antennas Wireless Propag. Lett., Vol. 15, 414-417, 2016.

    2. Liu, Y., K. Li, Y. T. Jia, Y. W. Hao, S. X. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 326-331, 2016.

    3. Han, T., X. Y. Cao, J. Gao, and Y. Zhao, "Design of shared aperture metasurface and its application on improving radiation and scattering performance of the waveguide slot antenna," Journal of Air Force Engineering University, Vol. 18, No. 3, 50-56, 2017 (in Chinese).

    4. Li, H. P., G. M. Wang, J. G. Liang, and X. J. Gao, "Wideband multifunctional metasurface for polarization conversion and gain enhancement," Progress In Electromagnetics Research, Vol. 155, 115-125, 2016.

    5. Yang, W. C., K. W. Tam, W. W. Choi, W. Q. Che, and H. T. Hui, "Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6206-6216, 2014.

    6. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402, 2008.

    7. Ustun, K. and G. T. Sayan, "Wideband long wave infrared metamaterial absorbers based on silicon nitride," J. Appl. Phys., Vol. 120, 203101, 2016.

    8. Zuo, W. Q., Y. Yang, X. X. He, D. W. Zhan, and Q. F. Zhang, "A miniaturized metamaterial absorber for ultrahigh-frequency RFID system," IEEE Antennas Wireless Propag. Lett., Vol. 16, 329-332, 2017.

    9. Ni, X. J., N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Broadband Light bending with plasmonic nanoantennas," Science, Vol. 335, 427, 2012.

    10. Kandasamy, K., B. Majumder, J. Mukherjee, and K. P. Ray, "Low-RCS and polarizationreconfigurable antenna using cross-slot-based metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1638-1641, 2015.

    11. Chen, W. G., C. A. Balanis, and C. R. Birtcher, "Checkerboard EBG surfaces for wideband radar cross section reduction," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2636-2645, 2015.

    12. Song, Y. C., J. Ding, C. J. Guo, Y. H. Ren, and J. K. Zhang, "Ultra-broadband backscatter radar cross section reduction based on polarization-insensitive metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 15, 329-331, 2016.

    13. Paquay, M., J. C. Iriarte, and Ederra, "Thin AMC structure for radar cross-section reduction," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3630-3638, 2007.

    14. Galarregui, J. C. I., A. T. Pereda, J. L. M. Falc´on, I. Ederra, R. Gonzalo, and P. Maagt, "Broadband radar cross-section reduction using AMC technology," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 6136-6143, 2013.

    15. Cui, T. J., M. Q. Qi, X.Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Applications, Vol. 3, No. 10, e218, 2014.

    16. Zhao, Y., et al., "Broadband diffusion metasurface based on a single anisotropic element and optimized by the simulated annealing algorithm," Scientific Reports, Vol. 6, 23896, 2016.

    17. Yan, X., et al., "Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface," Optics Express, Vol. 23, No. 22, 29128-29137, 2015.

    18. Zhang, H., Y. Lu, J. X. Su, Z. R. Li, J. B. Liu, and Y. Q. Yang, "Coding diffusion metasurface for ultra-wideband RCS reduction," Electronics Letters, Vol. 53, No. 3, 187-189, 2017.

    19. Zhao, J., et al., "Controlling the bandwidth of terahertz low-scattering metasurfaces," Adv. Optical Mater., Vol. 4, No. 11, 1773-1779, 2016.

    20. Li, W. Q., X. Y. Gao, J. Cao, Q. Yang, Y. Zhao, Z. Zhang, and C. H. Zhang, "A kind of shared aperture radar absorbing material with absorber and phase cancellation characteristics," Acta Phys. Sin., Vol. 63, No. 12, 124101, 2014 (in Chinese).

    21. Sievenpiper, D., L. J. Zhang, R. F. J. Broas, N. G. Alex’opolous, and E. Yablonovitch, "Highimpedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 11, 2059-2074, 1999.

    22. Vinoy, K. J., J. K. Abraham, and V. K. Varadan, "On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves," IEEE Trans. Antennas Propag., Vol. 51, 2296-2303, 2003.

    23. Wang, K., J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, "Broadband and broad-angle lowscattering metasurface based on hybrid optimization algorithm," Scientific Reports, Vol. 4, 5935, 2014.