Vol. 91
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-04-04
A Frequency Agility Synthesizer with Low Phase Noise for Fully Electronic Millimeter Wave Imaging
By
Progress In Electromagnetics Research C, Vol. 91, 227-239, 2019
Abstract
A wide Ka-band frequency agility synthesizer with low phase noise and high frequency stability is presented in this paper, which serves as the emission source of transmitter and the local oscillator (LO) of receiver in fully electronic millimeter wave (MMW) imaging system. In order to improve operating frequency and shorten hopping time, a novel method is proposed in this synthesizer. By mixing direct digital synthesis (DDS) with multiple phase locked loops (PLLs) and multiplying the mixed signal, a high output frequency with low phase noise and rapid frequency hopping is realized. The experimental results show that the frequency synthesizer achieves frequency resolution of 1 MHz from 27 to 32 GHz and phase noise of -95 dBc/Hz at 10 kHz carrier offset. In addition, the frequency switching time is 2 μs, and broadband spurs do not exceed -60 dBc.
Citation
Chunhui Fang Bing Huang Liang Wu Xiao-Wei Sun , "A Frequency Agility Synthesizer with Low Phase Noise for Fully Electronic Millimeter Wave Imaging," Progress In Electromagnetics Research C, Vol. 91, 227-239, 2019.
doi:10.2528/PIERC18122006
http://www.jpier.org/PIERC/pier.php?paper=18122006
References

1. Ahmed, S. S., A. Genghammer, A. Schiessl, and L.-P Schmidt, "Fully electronic-band personnel imager of 2m2 aperture based on a multistatic architecture," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, 651-657, 2013.
doi:10.1109/TMTT.2012.2228221

2. Liu, C., M. Yang, and X. Sun, "Towards robust human millimeter wave imaging inspection system in real time with deep learning," Progress In Electromagnetics Research, Vol. 161, 87-100, 2018.
doi:10.2528/PIER18012601

3. Sheen, D. M., D. L. Mcmakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 9, 1581-1592, 2001.
doi:10.1109/22.942570

4. Schiessl, A., A. Genghammer, and S. S. Ahmed, "Hardware realization of a 2m×1m fully electronic real-time mm-wave imaging system," European Conference on Synthetic Aperture Radar (EUSAR), Apr. 2012.

5. Wang, H., D. Guo, and L. Wang, "Design and implementation of Ku-band frequency synthesizer," International Conference on Integrated Circuits and Microsystems (ICICM), Nov. 2016.

6. Zhao, Z., X. Li, and W. Chang, "LFM-CW signal generator based on hybrid DDS-PLL structure," Electronic Letters, Vol. 49, No. 6, 391-393, Mar. 2013.
doi:10.1049/el.2012.2852

7. Ahmed, S. S., A. Schiessl, and L.-P. Schmidt, "A novel fully electronic active real-time imager based on a planar multistatic sparse array," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3567 -3576, Dec. 2011.
doi:10.1109/TMTT.2011.2172812

8. Kroupa, F., Phase Lock Loops and Frequency Synthesis, John Wiley & Sons, England, 2003.
doi:10.1002/0470014105

9. Crawford, J. A., Frequency Synthesizer Design Handbook, Artech House, Boston, 1994.

10. Chen, M., K. Han, M. Yang, and X. Sun, "Effects of phase-locked loop bandwidth on error vector magnitude in transmitter," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 10, 1315-1322, Jul. 2012.
doi:10.1080/09205071.2012.699390

11. Razavi, B., Monolithic Phase-Locked Loops and Clock Recovery Circuits: Theory and Design, Wiley-IEEE, Piscataway, New Jersey, 1996.
doi:10.1109/9780470545331

12. Banerjee, D., PLL Performance, Simulation, and Design, 5th edition, Texas Instruments Inc., Texas, May 2017.

13. Analog Devices Inc., "Fractional-N PLL with integrated VCO 45–1050, 1400–2100, 2800– 4200 MHz,", Norwood, U.S.A., Sep. 2011, [online] Available: https://www.analog.com/media/en/technical-documentation/data-sheets/hmc829.pdf.

14. Gardner, F. M., Phaselock Techniques, 3rd edition, John Wiley & Sons, New Jersey, 2005.
doi:10.1002/0471732699

15. Analog Devices Inc., "1 GSPS direct digital synthesizer with 14-Bit DAC,", Nor-wood, U.S.A., Jun. 2010, [online] Available: https://www.analog.com/media/en/technical-documentation/datasheets/AD9912.pdf.

16. Analog Devices Inc., "Fractional-N PLL with Integrated VCO SMT, 25–3000 MHz,", Norwood, U.S.A., May 2012, [online] Available: https://www.analog.com/media/en/technicaldocumentation/data-sheets/hmc830.pdf.

17. Ma, H., X. Tang, F. Xiao, and X. Zhang, "Phase noise analysis and estimate of millimeter wave PLL frequency synthesizer," Int. J. Infrared Millim. Waves, Vol. 26, No. 2, 271-278, 2005.
doi:10.1007/s10762-005-3005-1

18. Vankka, J., (n.d.), "Spur reduction techniques in sine output direct digital synthesis," Proceedings of the IEEE International Frequency Control Symposium, 951-959, Jun. 1996.

19. Caro, D. D. and A. G. M. Strollo, "High-performance direct digital frequency synthesizers using piecewise-polynomial approximation," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 52, No. 2, 324-337, Feb. 2005.
doi:10.1109/TCSI.2004.841592

20. Cui, W., X. Zhang, X. Lu, Y. Ren, M. Zhan, and B. Yan, "The design of high performance X-band frequency synthesizer based on DDS and PLL," IEEE Cross Strait Quad-Regional Radio Science and Wireless Technology Conference,, 97-100, Jul. 2013.

21. Wang, L., Y. Yang, J. Cai, and G. Liu, "A wide frequency coverage synthesizer with high performance for 3MHz–5 GHz transceiver," IEEE Third International Conference on Information Science and Technology, Mar. 2013.

22. Biswas, S. and V. Revathi, "A fast-switching low-spurious 6–18 GHz hybrid frequency synthesizer," IEEE MTT-S International Microwave and RF Conference, Dec. 2015.

23. Zhu, Y., H. Zhang, and W. Hong, "A frequency agile synthesizer using DDS and PLL techniques for FMCW radar," Asia-Pacific Microwave Conference, Dec. 2015.