Vol. 119
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-03-29
Modified Patch and Ground Plane Geometry with Reduced Resonant Frequency
By
Progress In Electromagnetics Research C, Vol. 119, 135-144, 2022
Abstract
A higher degree of miniaturization technique is presented based on frequency reduction method for a rectangular patch antenna by introducing slot on the radiating patch with unchanged antenna configuration. To realize the frequency reduction technique, a rectangular patch is design to operate at the fundamental frequency. Then a slot on the radiating patch is introduced and as an effect of slot, fundamental resonant frequency is shifted in left side in reflection coefficient plot. The percentage of reduction resonant frequency is 65.80% where 2.31 GHz is the fundamental frequency, and 790 MHz is the operating frequency of slot integrated patch geometry. In addition, we introduced another similar slot on the ground plane, and as a result, resonant frequency shifted from 790 MHz to 729 MHz caused by 68.44% reduction in resonant frequency with unchanged antenna dimension. Equivalent circuits have been analyzed for each antenna topology. To verify the simulated results, prototypes are fabricated and complied with measured results.
Citation
Khan Masood Parvez Tabish Ali Satyabrata Maiti , "Modified Patch and Ground Plane Geometry with Reduced Resonant Frequency," Progress In Electromagnetics Research C, Vol. 119, 135-144, 2022.
doi:10.2528/PIERC22020307
http://www.jpier.org/PIERC/pier.php?paper=22020307
References

1. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Trans. Antennas Propag., Vol. 52, No. 9, 2403-2414, Sep. 2004.
doi:10.1109/TAP.2004.834135

2. Buell, K., H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 135-146, Jan. 2006.
doi:10.1109/TMTT.2005.860329

3. Mosallaei, H. and K. Sarabandi, "Design and modeling of patch antenna printed on magneto-dielectric embedded-circuit metasubstrate," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 45-52, Jan. 2007.
doi:10.1109/TAP.2006.886566

4. Zhu, H. L., S. W. Cheung, and T. I. Yuk, "Miniaturization of patch antenna using metasurface," Microw. Opt. Technol. Lett., Vol. 57, No. 9, 2050-2056, Sep. 2015.
doi:10.1002/mop.29275

5. Chen, D., W. Yang, Q. Xue, and W. Che, "Miniaturized wideband planar antenna using inter-embedded metasurface structure," IEEE Trans. Antennas Propag., Vol. 69, No. 5, 3021-3026, May 2021.
doi:10.1109/TAP.2020.3028245

6. Zhu, S., X. Yang, J. Wang, and B. Wang, "Miniaturization of patch antenna based on hybrid topology optimization," Int. J. RF Microw. Comput. Eng., Vol. 30, No. 9, Sep. 2020.

7. Jarchi, S., J. Rashed-Mohassel, and R. Faraji-Dana, "Proximity effects of a layered periodic structure on miniaturization of patch antennas," Int. J. RF Microw. Comput. Eng., Vol. 23, No. 5, 549-558, Sep. 2013.
doi:10.1002/mmce.20689

8. Kula, J. S., D. Psychoudakis, W. J. Liao, C. C. Chen, J. L. Volakis, and J. W. Halloran, "Patch-antenna miniaturization using recently available ceramic substrates," IEEE Antennas Propag. Mag., Vol. 48, No. 6, 13-20, Dec. 2006.
doi:10.1109/MAP.2006.323335

9. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2175-2182, 2012.
doi:10.1109/TAP.2012.2189699

10. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Highly miniaturized dual band patch antenna loaded with metamaterial unit cell," Microw. Opt. Technol. Lett., Vol. 59, No. 8, 2027-2033, Aug. 2017.
doi:10.1002/mop.30683

11. Chair, R., K. M. Lee, and K. F. Lee, "Miniature multilayer shorted patch antenna," Electron. Lett., Vol. 36, 3-4, Jan. 2000.
doi:10.1049/el:20000029

12. Khan, M. U., M. S. Sharawi, and R. Mittra, "Microstrip patch antenna miniaturisation techniques: A review," IET Microwaves, Antennas and Propagation, Vol. 9, No. 9, 913-922, Institution of Engineering and Technology, Jun. 18, 2015.
doi:10.1049/iet-map.2014.0602

13. Haque, S. K. M. and K. M. Parvez, "Slot antenna miniaturization using slit, strip, and loop loading techniques," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2215-2221, May 2017.
doi:10.1109/TAP.2017.2684191

14. Ghosh, B., S. K. Moinul Haque, and D. Mitra, "Miniaturization of slot antennas using slit and strip loading," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3922-3927, Oct. 2011.
doi:10.1109/TAP.2011.2163754

15. Ghosh, B., S. K. Moinul Haque, and N. R. Yenduri, "Miniaturization of slot antennas using wire loading," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 488-491, 2013.
doi:10.1109/LAWP.2013.2255857

16. Parvez, K. M. and S. K. Moinul Haque, "Bandwidth enhancement and cross-polarization suppression of slot antenna," Electromagnetics, Vol. 41, No. 2, 119-130, 2021.
doi:10.1080/02726343.2021.1879358

17. Deshmukh, A. A. and K. P. Ray, "Compact broadband slotted rectangular microstrip antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1410-1413, 2009.
doi:10.1109/LAWP.2010.2040061

18. Dasgupta, S., B. Gupta, and H. Saha, "Compact equilateral triangular patch antenna with slot loading," Microw. Opt. Technol. Lett., Vol. 56, No. 2, 268-274, Feb. 2014.
doi:10.1002/mop.28073

19. Won, C., Y. Do Kim, and H. M. Lee, "A compact micro strip patch antenna with T-shaped slits for portable GPS handsets," ISAPE 2003 - 2003 6th International Symposium on Antennas, Propagation and EM Theory, Proceedings, 335-338, 2003.

20. Farahbakhsh, A. and D. Zarifi, "Miniaturization of patch antennas by curved edges," AEU - Int. J. Electron. Commun., Vol. 117, 153125, Apr. 2020.
doi:10.1016/j.aeue.2020.153125

21., , Ansys HFSS ver 19.2, Ansys Corp., Pittsburgh, PA, USA, 2018.

22. Balanis, C., Antenna Theory, Wiely-Interscience, New York, 2005.

23., , NI AWR ver 13, National Instrument Corporation, EI Segundo, CA, USA, 2019.