Vol. 53
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-01-12
An Improved Range-Doppler Algorithm for SAR Imaging at High Squint Angles
By
Progress In Electromagnetics Research M, Vol. 53, 41-52, 2017
Abstract
An improved range-Doppler algorithm (RDA) is proposed to reconstruct images from synthetic aperture radar (SAR) data received at high squint angles. At a higher squint angle, a larger synthetic aperture is required to receive sufficient amount of data for image reconstruction, and the range migration also becomes more serious, which demands more computational load and larger memory size. The proposed method can generate better SAR images with less computational load and memory than the conventional RDA, which is verified by simulations.
Citation
Po-Chih Chen, and Jean-Fu Kiang, "An Improved Range-Doppler Algorithm for SAR Imaging at High Squint Angles," Progress In Electromagnetics Research M, Vol. 53, 41-52, 2017.
doi:10.2528/PIERM16111601
References

1. Wang, W., W.-H. Wu, W. Su, R.-H. Zhan, and J. Zhang, "High squint mode SAR imaging using modified RD algorithm," IEEE China Summit Int. Conf. Signal Inform. Process., 589-592, Beijing, China, Jul. 2013.

2. Chen, S., S.-I. Zhang, H.-C. Zhao, and Y. Chen, "A new chirp scaling algorithm for highly squinted missile-borne SAR based on FrFT," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 8, No. 8, 3977-3987, Aug. 2015.
doi:10.1109/JSTARS.2014.2360192

3. Li, Z.-Y., Y. Liang, M.-D. Xing, Y.-Y. Huai, Y.-X. Gao, L.-T. Zeng, and Z. Bao, "An improved range model and omega-K-based imaging algorithm for high-squint SAR with curved trajectory and constant acceleration," IEEE Geosci. Remote Sensing Lett., Vol. 13, No. 5, 656-660, May 2016.
doi:10.1109/LGRS.2016.2533631

4. Li, W. and J. Wang, "A new improved step transform algorithm for highly squint SAR imaging," IEEE Geosci. Remote Sensing Lett., Vol. 8, No. 1, 118-122, Jan. 2011.
doi:10.1109/LGRS.2010.2053837

5. Wu, Y., G.-C. Sun, X.-G. Xia, M. Xing, J. Yang, and Z. Bao, "An azimuth frequency non-linear chirp scaling (FNCS) algorithm for TOPS SAR imaging with high squint angle," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 7, No. 1, 213-222, Jan. 2014.
doi:10.1109/JSTARS.2013.2258893

6. An, D.-X., X.-T. Huang, T. Jin, and Z.-M. Zhou, "Extended two-step focusing approach for squinted spotlight SAR imaging," IEEE Trans. Geosci. Remote Sensing, Vol. 50, No. 7, 2889-3000, Jul. 2012.
doi:10.1109/TGRS.2011.2174460

7. Xu, H., J. Gao, and J. Li, "A variable PRF imaging method for high squint diving SAR," Progress In Electromagnetics Research, Vol. 135, 215-229, 2013.
doi:10.2528/PIER12112304

8. Liang, Y., Z.-Y. Li, L. Zeng, M.-D. Xing, and Z. Bao, "A high-order phase correction approach for focusing HS-SAR small-aperture data of high-speed moving platforms," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 8, No. 9, 4551-4561, Sep. 2015.
doi:10.1109/JSTARS.2015.2459765

9. Ma, C., H. Gu, W.-M. Su, X.-H. Zhang, and C.-Z. Li, "Focusing one-stationary bistatic forward-looking synthetic aperture radar with squint minimisation method," IET Radar Sonar Navig., Vol. 9, No. 8, 927-932, Sep. 2015.
doi:10.1049/iet-rsn.2014.0499

10. Moreira, A., "Real-time synthetic aperture radar (SAR) processing with a new subaperture approach," IEEE Trans. Geosci. Remote Sensing, Vol. 30, No. 4, 714-722, Jul. 1992.
doi:10.1109/36.158865

11. Zeng, T., Y. Li, Z. Ding, T. Long, D. Yao, and Y. Sun, "Subaperture approach based on azimuth-dependent range cell migration correction and azimuth focusing parameter equalization for maneuvering high-squint-mode SAR," IEEE Trans. Geosci. Remote Sensing, Vol. 53, No. 12, 6718-6732, Dec. 2015.
doi:10.1109/TGRS.2015.2447393

12. Huang, P.-P., W. Xu, and S.-Y. Li, "Spaceborne squinted multichannel synthetic aperture radar data focusing," IET Radar Sonar Navig., Vol. 8, No. 9, 1073-1080, Feb. 2015.
doi:10.1049/iet-rsn.2013.0332

13. Chen, J.-A., J.-D. Zhang, X.-Y. Qiu, and X.-W. Tang, "A modified subaperture imaging algorithm for squinted sliding spotlight SAR," IET Int. Radar Conf., Hangzhou, China, Oct. 2015.

14. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data, Artech House, 2005.