Vol. 81

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-06-10

Comparative Study on Sparse and Recovery Algorithms for Antenna Measurement by Compressed Sensing

By Liang Zhang, Tianting Wang, Yang Liu, Meng Kong, and Xian-Liang Wu
Progress In Electromagnetics Research M, Vol. 81, 149-158, 2019
doi:10.2528/PIERM19041803

Abstract

Compressed sensing (CS) is utilized in antenna measurements. The antenna data are compressed using the CS method, and the performances of different sparse and recovery algorithms of CS are used to solve antenna measurements. Experiments are conducted on various types of antennas. The results show that efficiency can be greatly improved by reducing the number of measurement points. The best reconstruction performance is exhibited by the Discrete Wavelet Transform (DWT) algorithm combined with the Compressive Sampling Matching Pursuit (COSAMP) algorithm.

Citation


Liang Zhang, Tianting Wang, Yang Liu, Meng Kong, and Xian-Liang Wu, "Comparative Study on Sparse and Recovery Algorithms for Antenna Measurement by Compressed Sensing," Progress In Electromagnetics Research M, Vol. 81, 149-158, 2019.
doi:10.2528/PIERM19041803
http://www.jpier.org/PIERM/pier.php?paper=19041803

References


    1. Duarte, M. F., et al., "Single-pixel imaging via compressive sampling," IEEE Signal Processing Mag., Vol. 25, No. 2, 83-91, 2008.
    doi:10.1109/MSP.2007.914730

    2. Lustig, M., D. Donoho, and J. M. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magnetic Resonance in Medicine, Vol. 58, No. 6, 1182-1195, 2007.
    doi:10.1002/mrm.21391

    3. Paredes, J. L., G. R. Arce, and Z. Wang, "Ultra-wideband compressed sensing: Channel estimation," IEEE Journal of Selected Topics in Signal Processing, Vol. 1, No. 3, 383-395, 2007.
    doi:10.1109/JSTSP.2007.906657

    4. Bajwa, W., et al., "Compressive wireless sensing," International Conference on Information Processing in Sensor Networks ACM, Vol. 402, No. 2, 134-142, 2006.

    5. Chang, J., et al., "A novel SAR imaging algorithm based on compressed sensing," IEEE Cie International Conference on Radar, IEEE, 2006.

    6. Lin, X. H., G. Y. Xue, and P. Liu, "Novel data acquisition method for interference suppression in dual-channel SAR," Progress In Electromagnetics Research, Vol. 144, 79-92, 2014.
    doi:10.2528/PIER13111207

    7. Migliore, D. M., "A simple introduction to compressed sensing/sparse recovery with applications in antenna measurements," IEEE Antennas and Propagation Magazine, Vol. 56, No. 2, 14-26, 2014.
    doi:10.1109/MAP.2014.6837061

    8. Cornelius, R., et al., "Compressed sensing applied to spherical near-field to far-field transformation," European Conference on Antennas and Propagation, IEEE, 2016.

    9. Fuchs, B., et al., "Fast antenna far-field characterization via sparse spherical harmonic expansion," IEEE Transactions on Antennas & Propagation, Vol. 65, No. 99, 1, 2017.

    10. Zhang, L., F. Wang, T. Wang, X. Y. Cao, M. S. Chen, and X. L. Wu, "Fast antenna far-field measurement for sparse sampling technology," Progress In Electromagnetics Research M, Vol. 72, 145-152, 2018.
    doi:10.2528/PIERM18042509

    11. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
    doi:10.1109/TIT.2006.871582

    12. Donoho, D. L., et al., "Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 58, No. 2, 1094-1121, 2012.
    doi:10.1109/TIT.2011.2173241

    13. Needell, D. and J. A. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," Appl. Comput. Harmon. Anal., Vol. 26, No. 3, 301-321, 2008.
    doi:10.1016/j.acha.2008.07.002

    14. Chartrand, R. and W. Yin, "Iteratively reweighted algorithms for compressive sensing," IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, ICASSP 2008, IEEE, 2008.

    15. Huggins, P. S. and S. W. Zucker, "Greedy base pursuit," IEEE Transactions on Signal Processing, Vol. 55, No. 7, 3760-3772, 2007.
    doi:10.1109/TSP.2007.894287

    16. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, No. 12, 4655-4666, 2007.
    doi:10.1109/TIT.2007.909108

    17. Dai, W. and O. Milenkovic, "Subspace pursuit for compressive sensing signal reconstruction," IEEE Transactions on Information Theory, Vol. 55, No. 5, 2230-2249, 2008.
    doi:10.1109/TIT.2009.2016006

    18. Blumensath, T. and M. E. Davies, "Iterative hard thresholding for compressed sensing," Applied & Computational Harmonic Analysis, Vol. 27, No. 3, 265-274, 2008.
    doi:10.1016/j.acha.2009.04.002