Vol. 107
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-01-21
An Approximate Closed-Form Solution of Compensating for Beam Pointing Error with Uniform Linear Arrays
By
Progress In Electromagnetics Research M, Vol. 107, 193-204, 2022
Abstract
In phased array systems, beam pointing accuracy is one of the major issues for its great effect on radar communication. Regardless of the initial excitation error and the inherent mutual coupling between antenna elements, the anisotropy of antenna element's radiation pattern is the main reason for beam pointing error. In this paper, we propose a closed-form solution of compensating for beam pointing error with uniform linear arrays. It gives a theoretical explanation how beam pointing deviates from the desired angle when scanning angle and the number of elements vary. Then a numerical simulation validates the effectiveness of the proposed theory. Finally, an experiment with an X-band phased array verifies that the closed-form solution can be applied to practical phased array systems in the presence of mutual coupling.
Citation
Shuaizhao Li Zhongjun Yu Qiang Zhang Chengxiang Hao Ning Cui , "An Approximate Closed-Form Solution of Compensating for Beam Pointing Error with Uniform Linear Arrays," Progress In Electromagnetics Research M, Vol. 107, 193-204, 2022.
doi:10.2528/PIERM21121701
http://www.jpier.org/PIERM/pier.php?paper=21121701
References

1. Rock, J. C., J. H. Mullins, J. P. Booth, and T. Hudson, "The past, present, and future of electronically-steerable phased arrays in defense applications," 2008 IEEE Aerospace Conference, 1-7, 2008.

2. Flamini, R., C. Mazzucco, R. Lombardi, C. Massagrande, F. Morgia, and A. Milani, "Millimeter-wave phased arrays for 5G: An industry view on current issues and challenges," 2019 IEEE International Symposium on Phased Array System Technology (PAST), 1-2, 2019.

3. Soheil, Y., M.-A. Karim, and M.-T. Mahmoud, "Low-cost comb-line-fed microstrip antenna arrays with low sidelobe level for 77 GHz automotive radar applications," Progress In Electromagnetics Research M, Vol. 94, 179-187, 2020.
doi:10.2528/PIERM19110205

4. Mano, S. and T. Katagi, "A method for measuring amplitude and phase of each radiating element of a phased array antenna," Electronics and Communications in Japan (Part I: Communications), Vol. 65, No. 5, 58-64, 1982.
doi:10.1002/ecja.4410650508

5. Sorace, R., "Phased array calibration," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 4, 517-525, 2001.
doi:10.1109/8.923310

6. Takahashi, T., Y. Konishi, and I. Chiba, "A novel amplitude-only measurement method to determine element fields in phased arrays," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3222-3230, 2012.
doi:10.1109/TAP.2012.2196961

7. Long, R., J. Ouyang, F. Yang, W. Han, and L. Zhou, "Fast amplitude-only measurement method for phased array calibration," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1815-1822, 2017.
doi:10.1109/TAP.2016.2629467

8. Long, R. and J. Ouyang, "Planar phased array calibration based on near-field measurement system," Progress In Electromagnetics Research C, Vol. 71, 23-31, 2017.
doi:10.2528/PIERC16112004

9. Lu, Y., L. Zhou, M. Cui, X. Du, and Y. Hu, "A method for planar phased array calibration," Progress In Electromagnetics Research Letters, Vol. 94, 19-25, 2020.
doi:10.2528/PIERL20090106

10. Lee, K.-M., R.-S. Chu, and S.-C. Liu, "A built-in performance-monitoring/fault isolation and correction (PM/FIC) system for active phased-array antennas," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 11, 1530-1540, 1993.
doi:10.1109/8.267356

11. Long, R., J. Ouyang, F. Yang, W. Han, and L. Zhou, "Multi-element phased array calibration method by solving linear equations," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 2931-2939, 2017.
doi:10.1109/TAP.2017.2694767

12. Aumann, H. M., A. J. Fenn, and F. G. Willwerth, "Phased array antenna calibration and pattern prediction using mutual coupling measurements," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 7, 844-850, 1989.
doi:10.1109/8.29378

13. Nafe, A., K. Kibaroglu, M. Sayginer, and G. M. Rebeiz, "An in-situ self-test and self-calibration technique utilizing antenna mutual coupling for 5G multi-beam TRX phased arrays," 2019 IEEE MTT-S International Microwave Symposium (IMS), 1229-1232, 2019.
doi:10.1109/MWSYM.2019.8701072

14. Bao, J., Q. Huang, X. H. Wang, P. Liu, and X.-W. Shi, "Mutual coupling calibration for L-shaped microstrip antenna array with accurate 2-D direction of arrival estimation," Progress In Electromagnetics Research Letters, Vol. 57, 9-16, 2015.
doi:10.2528/PIERL15052401

15. Fang, Y. and Y. Rahmat-Samii, "Microstrip antennas integrated with Electromagnetic Band-Gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

16. Chiu, C.-Y., C.-H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1732-1738, 2007.
doi:10.1109/TAP.2007.898618

17. Yang, X. M., X. G. Liu, X. Y. Zhou, and T. J. Cui, "Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 389-391, 2012.
doi:10.1109/LAWP.2012.2193111

18. Xia, R.-L., S.-W. Qu, P.-F. Li, D. Q. Yang, S. Yang, and Z.-P. Nie, "Wide-angle scanning phased array using an efficient decoupling network," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 5161-5165, 2015.
doi:10.1109/TAP.2015.2476342

19. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, Hoboken, 2016.

20. Malek, N. A., K. K. Anuar, O. O. Khalifa, and M. R. Islam, "Comparison of unit-cell and all-cells active element patterns of small antenna array," 2020 IEEE International RF and Microwave Conference (RFM), 1-4, 2020.

21. Mailloux, R. J., Phased Array Antenna Handbook, Artech House, Norwood, 2017.

22. Pozar, D. M., "The active element pattern," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 8, 1176-1178, 1994.
doi:10.1109/8.310010