Vol. 4
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-09-18
Nonuniformly Spaced Linear Array Design for the Specified Beamwidth/Sidelobe Level OR Specified Directivity/Sidelobe Level with Coupling Consideration
By
Progress In Electromagnetics Research M, Vol. 4, 185-209, 2008
Abstract
In this paper, we investigate nonuniformly spaced linear arrays (NUSLA) rigorously. Several important problems in NUSLA design are solved with the combination of the Genetic Algorithm and Conjugate Gradient method (GA-CG). The pattern synthesis for the specified beamwidth and minimum achievable sidelobe level (SLL) are performed and for the first time, the graphs which show the relation between the beamwidth, sidelobe level and number of elements for NUSLA are derived. Also, the NUSLA's pattern for the specified directivity and sidelobe level is synthesized. The graphs showing the behavior of NUSLA relative to the increase of its length for a fixed number of elements are derived. These graphs showthe relations between the directivity and sidelobe level of NUSLA with its length. As a practical design, an array of parallel dipoles is designed for specified beamwidth/sidelobe level or specified directivity/sidelobe level. Furthermore, a novel Neural Network based model for the NUSLA is presented for the rapid and accurate computation of Sparameters. The computed S-parameters are used for the computation of coupling among elements. Then the GA-CG method can adjust these values in the synthesis process to achieve desired pattern and bearable coupling among elements.
Citation
Homayoon Oraizi Mojtaba Fallahpour , "Nonuniformly Spaced Linear Array Design for the Specified Beamwidth/Sidelobe Level OR Specified Directivity/Sidelobe Level with Coupling Consideration," Progress In Electromagnetics Research M, Vol. 4, 185-209, 2008.
doi:10.2528/PIERM08072302
http://www.jpier.org/PIERM/pier.php?paper=08072302
References

1. Unz, H., "Linear arrays with orbitrarily distributed elements," IRE Trans. Antennas Propagat., Vol. 8, 222-223, Mar. 1960.
doi:10.1109/TAP.1960.1144829

2. Skolnik, M. I., J. W. Sherman III, and G. Nemhauser, "Dynamic programming applied to unequally spaced arrays," IEEE Trans. Antennas Propagat., Vol. 12, 35-43, Jan. 1964.
doi:10.1109/TAP.1964.1138163

3. Mailloux, R. J. and E. Cohen, "Statistically thinned arrays with quantized element weights," IEEE Trans. Antennas Propagat., Vol. 39, 436-447, Apr. 1991.
doi:10.1109/8.81455

4. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propagat., Vol. 42, No. 7, 993-999, July 1994.
doi:10.1109/8.299602

5. Donelli, M., S. Caorsi, and F. DeNatale, M. Pastorino, A. Massa, "Linear antenna synthesis with a hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 49, 1-22, 2004.
doi:10.2528/PIER03121301

6. Mahanti, G. K. and N. Pathak P. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304

7. Meijer, C. A., "Simulated annealing in the design of thinned arrays having lowsidelob e levels," Proc. South African Symp. Communication and Signal Processing, 361-366, 1998.

8. Razavi, C. A. and K. Forooraghi, "Thinned arrays using pattern search algorithms," Progress In Electromagnetics Research, Vol. 78, 61-71, 2008.
doi:10.2528/PIER07081501

9. Harrington, R. F., "Sidelobe reduction by nonuniform element spacing," IRE Trans. Antennas Propagat., Vol. 9, 187, Mar. 1961.

10. Andreasan, M. G., "Linear arrays with variable interelement spacings," IEEE Trans. Antennas Propagat., Vol. 10, 137-143, Mar. 1962.

11. Ishimaru, A., "Theory of unequally-spaced arrays," IRE Trans. Antennas Propagat., Vol. 10, 691-702, Nov. 1962.

12. Kumar, B. P. and G. R. Branner, "Design of unequally spaced arrays for performance improvement," IEEE Trans. Antennas Propagat., Vol. 47, No. 3, 511-523, Mar. 1999.
doi:10.1109/8.768787

13. Kumar, B. P. and G. R. Branner, "Generalized analytical technique for the synthesis of unequally spaced arrays with linear, planar, cylendrical or spherical geometry ," IEEE Trans. Antennas Propagat., Vol. 53, No. 2, 621-634, Feb. 2005.
doi:10.1109/TAP.2004.841324

14. Chen, K., Z. He, and C. Han, "A modified real GA for the sparse lineararray synthesis with multiple constraints," IEEE Trans. Antennas Propagat., Vol. 54, No. 7, 2169-2173, July 2006.
doi:10.1109/TAP.2006.877211

15. Zhang, Y. F. and W. Cao, "Array pattern synthesis based on weighted biorthogonal modes," J. of Electromagn. Waves and Appl., Vol. 20, No. 10, 1367-1376, 2006.
doi:10.1163/156939306779276875

16. Lee, K.-C. and J.-Y. Jhang, "Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays ," J. of Electromagn. Waves and Appl., Vol. 20, No. 14, 2001-2012, 2006.
doi:10.1163/156939306779322747

17. Ayestaran, R. G., F. Las-Heras, and J. A. Martınez, "Nonuniform-antenna array synthesis using neural networks," J. of Electromagn. Waves and Appl., Vol. 21, No. 8, 1001-1011, 2007.

18. Kazemi, S. and H. R. Hassani, "Performance improvement in amplitude synthesis of unequally spaced array using least mean square method," Progress In Electromagnetics Research B, Vol. 1, 135-145, 2008.
doi:10.2528/PIERB07103002

19. Stutzman, L. and G. A. Thiele, Antenna Theory and Design, 120-121, John Wiley & Sons, 1998.

20. Bray, M. G., D. H.Werner, D. W. Boeringer, and D. W. Machuga, "Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning ," IEEE Trans. Antennas Propagat., Vol. 50, No. 12, 1732-1742, Dec. 2002.
doi:10.1109/TAP.2002.807947

21. Bray, M. G., D. H.Werner, D. W. Boeringer, and . W. Machuga, "Thinned aperiodic, linear phased array optimizationfor reduced grating lobes during scanning with input impedance bounds," IEEE International Symposium on Antennas and Propagation Digest, Vol. 3, 688-691, Boston, MA, July 2001.

22. Bossard, J. A., D. H. Werner, and M. G. Bray, "Efficient impedance interpolation and pattern approximation for linearmicrostrip phased arrays using neural networks," USNC/URSI National Radio Scicnce Meeting, Vol. 102, Columbus, OH, June 2003.

23. DeLuccia, C. S. and D. H. Werner, "Nature-based design of aperiodic linear arrays with broadband elements using a combination of rapid neural network estimation techniques and genetic algorithms," IEEE Antennas and Propagation Magazine, Vol. 49, No. 5, 13-23, Oct. 2007.
doi:10.1109/MAP.2007.4395292

24. Daniel, J. P., "Mutual coupling between antennas for emission or reception-application to passive and active dipoles ," IEEE Trans. Antennas Propagat., Vol. 22, No. 2, 347-349, 1973.
doi:10.1109/TAP.1974.1140774

25. Taylor, T. T., "Design of line-source antennas for narrow beam width and low side lobes," IRE Trans. Antenna Propagat., Vol. 3, 16-28, 1955.

26. FEKO 5.2, www.feko.info.

27. Zhu, Y.-Z., Y.-J. Xie, Z.-Y. Lei, and T. Dang, "Array a novel method of mutual coupling matching for array antenna design," J. of Electromagn. Waves and Appl., Vol. 21, No. 8, 1013-1024, 2007.

28. Zhou, Q., Y. J. Xie, and Z. Chen, "Prediction of equipment-toequipment coupling through antennas mounted on an aircraft," J. of Electromagn. Waves and Appl., Vol. 21, No. 5, 653-663, 2007.
doi:10.1163/156939307780667300

29. Ayestaran, R. G., F. Las-Heras, and L. F. Herran, "High-accuracy neural-network-based array synthesis including element coupling," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 45-48, 2006.
doi:10.1109/LAWP.2006.870366

30. Mohamed, M. D. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks ," J. of Electromagn. Waves and Appl., Vol. 20, No. 8, 1101-1114, 2006.
doi:10.1163/156939306776930240

31. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of airsuspended trapezoidal and rectangular-shaped microshield lines," J. of Electromagn. Waves and Appl., Vol. 20, No. 9, 1161-1174, 2006.
doi:10.1163/156939306777442917

32. Ayestaran, R. G., J. Laviada, and F. Las-Heras, "Synthesis of passive-dipole arrays with a genetic-neural hybrid method," J. of Electromagn. Waves and Appl., Vol. 20, No. 15, 2123-2135, 2006.
doi:10.1163/156939306779322549

33. He, Q.-Q., "Conformal array based on pattern reconfigurable antenna and its artificial neural model," J. of Electromagn. Waves and Appl., Vol. 22, No. 1, 99-110, 2008.
doi:10.1163/156939308783122751