Vol. 6
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-04-07
Estimation and Measurement of Biological Tissues Using Optical Simulation Method
By
Progress In Electromagnetics Research M, Vol. 6, 155-165, 2009
Abstract
This paper mainly deals with the optical properties of biological tissues that are measured using laser reflectometry method. The result is compared with the phantom and simulation values to get accurate result. The surface Backscattering was determined by laser reflectometry. The tissue equivalent phantom would be prepared with the help of white paraffin wax mixed with various colour pigments in multiple proportions. A familiar Monte Carlo Simulation is used for the analysis of the optical properties of the tissue. The normalized backscattered intensity (NBI) signals from the tissue surface, measured by the output probes after digitization are used to reconstruct the reflectance images of tissues in various layers below the skin surface. This method was useful to trace the abnormal in the tissue.
Citation
G. Jagajothi, and Singaravelu Raghavan, "Estimation and Measurement of Biological Tissues Using Optical Simulation Method," Progress In Electromagnetics Research M, Vol. 6, 155-165, 2009.
doi:10.2528/PIERM09021604
References

1. Kwon, O., Jeong et al. "Estimation of anomaly location and size using electrical impedance tomography," IEEE Trans. on Biomedical Eng., Vol. 50, 89-96, 2003.
doi:10.1109/TBME.2002.805474

2. Anderson, R. R. and J. A. Parrish, "The optics of human skin," J. Invest. Dermotol., Vol. 77, 13-19, 1981.
doi:10.1111/1523-1747.ep12479191

3. Van Gemert, T. M. J., S. L. Jacques, and H. J. C. Sterenborg, "Skin optics," IEEE Trans. on Biomed. Eng., Vol. 36, 1146-1154, 1989.
doi:10.1109/10.42108

4. Schmitt, J. M., G. X. Zhou, and E. C. Walker, "Multilayer model of photon diffusion in skin," J. Opt. Soc. Am., Vol. A7, 2141-2153, 1990.
doi:10.1364/JOSAA.7.002141

5. Hintz, S. R., D. A. Benaron, J. P. Vanhouten, J. L. Duckworth, H. S. Lic, D. K. Stevenson, and W. F. Cheong, "Stationary head band for clinical time of flight optical imaging at the bedside," Photochem. Photobiol., Vol. 68, 361-369, 1998.
doi:10.1111/j.1751-1097.1998.tb09693.x

6. Fantini, S., S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position and optical properties of breast tumors in viva by noninvasive optical methods," Appl. Opt., Vol. 37, 1982-1989, 1998.
doi:10.1364/AO.37.001982

7. Hillmann, E. M. C., J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Sehimdt, D. T. Delpy, and S. A. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Boi., Vol. 46, 1117-1130, 2001.
doi:10.1088/0031-9155/46/4/315

8. Li, H., Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, and R. P. Mason, "Non-invasive investigation for blood oxygenation dynamics of tumors by near-infrared spectroscopy," Appl. Opt., Vol. 39, 5231-5243, 2000.
doi:10.1364/AO.39.005231

9. Hampel, U., E. Scheicher, H. Zepnick, and R. Freyer, "Clinical NIR spectroscopy and optical tomography of testis," Proc. SPIE2001, Vol. 4432, 210-220, 2001.
doi:10.1117/12.447137

10. Jiao, S., G. Yao, and L. V. Wang, "Depth resolved two-dimensional stoke vectors of backscattered light and Mulller matrices of biological tissue measured with optical coherence tomography," Appl. Opt., Vol. 39, 6318-6324, 2000.
doi:10.1364/AO.39.006318

11. Chacko, S. and M. Singh, "3-D reconstruction of transillumination tomographic images of human breast phantoms by red and infrared lasers," IEEE Trans. Biomed. Eng., Vol. 47, 131-135, 2000.
doi:10.1109/10.817628

12. Cubeddu, R., A. Pifferi, P. Taroni, A. Torricerlli, and G. Valentinil, "Imaging with diffusing light: An experimental study on the effect of the background optical properties," Appl. Opt., Vol. 37, 3564-3573, 1998.
doi:10.1364/AO.37.003564

13. Schmitt, J. M., G. X. Zhou, and E. C.Walkker, "Multilayer model of photon diffusion in skin," J. Opt. Soc. Amer. A, Vol. 7, 2141-2153, 1990.
doi:10.1364/JOSAA.7.002141

14. Colak, S. B., M. B. Van Mark, G. W. Hooft, J. H. Hoogenraad, E. S. Van der Linden, and F. A. Kuijpers, "Clinical optical tomography and NIR spectroscopy for breast cancer detection," IEEE J. Select Topics Quantum Electron., Vol. 5, 143-1158, 1999.
doi:10.1109/2944.796341

15. Chacko, S. and M. Singh, "Multi-layer imaging of human organs by measurement of laser back-scattering radiation," Med. Biol. Eng. Comput., Vol. 37, 278-284, 1999.
doi:10.1007/BF02513300

16. Colak, S. B., M. B. Van Mark, G. W. Hoof, J. H. Hoogenraad, E. S. Van der Linden, and F. A. Kuijpers, "Clinical optical tomography and NIR spectroscopy for breast cancer detection," IEEE J. Select Topics Quantum Electron., Vol. 5, 1143-1158, 1999.
doi:10.1109/2944.796341

17. Cubeddu, R., A. Pifferi, P. Taroni, A. Torricelli, and G. A. Valentini, "Solid tissue phantom for photon migration studies," Phys. Med. Biol., Vol. 42, 1971-1979, 1997.
doi:10.1088/0031-9155/42/10/011

18. Dehghani, H. and D. T. Delpy, "Near infrared spectroscopy of adult head. Effect of scattering and absorbing obstructions in the cerebro spinal fluid layer on light on light distribution in the tissue," Appl. Op., Vol. 39, 4721-4729, 2000.
doi:10.1364/AO.39.004721

19. Flock, S. T., M. S. Patterson, B. C. Wilson, and D. R. Wyman, "Monte Carlo modeling of light propagation in highly scattering tissue --- I: Model predictions and comparison with diffusion theory," IEEE Trans. Biomed., Vol. 36, 1162-1168, 1989.
doi:10.1109/TBME.1989.1173624

20. Grosenick, D., H. Wabnitz, H. Hrinneberg, and K. T. Oesta, "Development of a time-domain optical mannography and first invivo applications ," Appl. Opt., Vol. 38, 2927-2943, 1999.
doi:10.1364/AO.38.002927

21. Van Stavren, H. J., C. J. M. Moses, J. Van Maries, S. A. Prahl, and M. J. C. Van, "Light scattering in intra lipid 10% in the wavelength range of 400-1100 nm," Appl. Opt., Vol. 30, 4507-4514, 1991.
doi:10.1364/AO.30.004507

22. Farrell, T. J., M. S. Patterson, and M. Essenpresis, "Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry ," Appl. Opt., Vol. 37, 1958-1972, 1998.
doi:10.1364/AO.37.001958

23. Chinn, S. R., E. A. Swanson, and J. G. Fujimoto, "Optical coherencetomography using a frequency tunable optical source," Opt. Lett., Vol. 22, 340-342, 1997.
doi:10.1364/OL.22.000340

24. Pougue, B. W., et al. "Three dimensional simulation of near infrared diffusion in tissue: Boundary condition and geometry analysis for finite-element image reconstruction," Appl. Optics, Vol. 40, 588-599, 2001.
doi:10.1364/AO.40.000588

25. Mitic, G., J. Kober, J. Otto, E. Piles, E. Solkner, and W. Zinth, "Time gated transillumination of biological tissues and tissue like phantoms ," Appl. Opt., Vol. 33, 6699-6709, 1994.
doi:10.1364/AO.33.006699

26. Anderson-Engles, S., R. Berg, S. Svanberg, and O. Jarlman, "Time resolved transillumination for medical diagnostics," Opt. Lett., Vol. 15, 1179-1181, 1990.
doi:10.1364/OL.15.001179

27. Torricelli, A., A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, "Invivo optical characterization of human tissues from 610 to 1010 nm by time resolved reflectance spectroscopy," Phys. Med. Biol., Vol. 46, 2227-2237, 2001.
doi:10.1088/0031-9155/46/8/313

28. Arridge, S. R., Z. P. Vander, D. T. Delpy, and M. Cope, "Reconstruction methods of infra-red absorption imaging," Proc. SPIE, Vol. 1431, 204-215, 1991.
doi:10.1117/12.44191

29. Shanthi, S. and M. Singh, "Laser reflectance imaging of human organs and comparison with perfusion images," Med. Biol.Eng. Comput., Vol. 35, 253-258, 1997.
doi:10.1007/BF02530046