Vol. 8
Latest Volume
All Volumes
PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2009-07-01
Microwave Absorption, Conductivity and Complex Pemittivity of Fritless Ni(1-X)Cuxmn2o4 (0≤X≤1) Ceramic Thick Film:Effect of Copper
By
Progress In Electromagnetics Research C, Vol. 8, 149-160, 2009
Abstract
The effect of copper on the microwave absorption, conductivity and complex permittivity of fritless Ni(1-x)CuxMn2O4 (x=0,0.4,0.8,1) thick film on alumina have been investigated in the 8-18 GHz frequency range. The structural changes have been identified by scanning electron microscope (SEM), FTIR and RAMAN scattering spectroscopy. The microwave conductivity and permittivity increase as copper content increases. The fritless Ni(1-x)CuxMn2O4 (0≤x≤1) thick film with x=0.4 shows best absorption properties, though all the other compositions also show good absorption in a large frequency range. The microwave conductivity increases from 1S/cm to 951 S/cm due to copper and the dielectric constant (ε) increases from 7 to 19.5.
Citation
Rupali N. Jadhav, and Vijaya Puri, "Microwave Absorption, Conductivity and Complex Pemittivity of Fritless Ni(1-X)Cuxmn2o4 (0≤X≤1) Ceramic Thick Film:Effect of Copper," Progress In Electromagnetics Research C, Vol. 8, 149-160, 2009.
doi:10.2528/PIERC09052502
References

1. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shoorehdeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER07101702

2. Abbas, S. M., A. K. Dixit, R. Chatterjee, and T. C. Goel, "Complex permittivity and microwave absorption properties of BaTiO3-polyaniline composite," Materials Science and Engineering B, Vol. 125, 167-171, 2005.
doi:10.1016/j.mseb.2005.07.018

3. Zhang, Y. C., Z. X. Yue, X. Qi, B. Li, Z. L. Gui, and L. T. Li, "Microwave dielectric properties of Zn(Nb(1-x)Tax)2O6ceramics," Materials Letters, Vol. 58, 1392-1395, 2004.
doi:10.1016/j.matlet.2003.09.034

4. Chou, Y.-H., M.-J. Jeng, Y.-H. Lee, and Y.-G. Jan, "Measurement of RF PCB dielectric properties and losses," Progress In Electromagnetics Research Letters, Vol. 4, 139-148, 2008.
doi:10.2528/PIERL08072403

5. He, X., Z. X. Tang, B. Zhang, and Y. Q.Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501

6. Marie, M., J. Mazzochette, A. H. Feingold, P. Amstutz, R. L. Wahlers, C. Huang, and S. J. Stein, "Thick film variable temperature variable attenuators," Proceeding of the 1997 IMPS Philadelphia Symposium, Vol. 3235, 344-349, 1997.

7. Savic, S. M., M. V. Nikolic, O. S. Aleksic, M. Slankamenac, M. Zivanov, and P. M. Nikolic, "Intrinsic resistivity of sintered nickel manganite vs. powder activation time and density," Science of Sintering, Vol. 40, 27-32, 2008.
doi:10.2298/SOS0801027S

8. Verses, A., J. G. Noudem, O. Pery, S. Founez, and G. Bailleul, "Manganese based spinel --- Like ceramics with NTC --- Type thermistor behavior," Solid State Ionics, Vol. 178, 423-428, 2007.
doi:10.1016/j.ssi.2007.01.028

9. Park, K., "Structural and electrical properties of FeMg0.7Cr0.7-xAlxO4 (0≤y≤0.3) thick film NTC thermistors," Journal of European Ceramic Society, Vol. 256, 909-914, 2006.
doi:10.1016/j.jeurceramsoc.2004.12.021

10. Kanade, S. A. and V. Puri, "Properties of thick film Ni0.6Co0.4FeyMn2-yO4: (0≤y≤0.5) NTC ceramics," Journal of Alloys and Compounds, Vol. 475, 352-355, 2009.
doi:10.1016/j.jallcom.2008.07.022

11. Pi, L., X. Xu, and Y. Zhang, "Anomalous transport properties of heavily doped polycrystalline La0.825Sr0.175Mn1-xCuxO3," Physical Review B, Vol. 62, 5667-5672, 2000.
doi:10.1103/PhysRevB.62.5667

12. Julien, C., M. Massot, S. Rangan, M. Lemal, and D. Guyomard, "Study of structural defects in -MnO2 by Raman spectroscopy," Journal of Raman Spectroscopy, Vol. 33, 223-228, 2002.
doi:10.1002/jrs.838

13. Chitra, S., P. Kalyani, T. Mohan, M. Massot, S. Ziolkiewicz, R. Ganandharan, M. Eddrief, and C. Julien, "Physical properties of LiMn2O4 spinel prepared at moderate temperature," Ionics, Vol. 4, 8-15, 1998.
doi:10.1007/BF02375774

14. Dokko, K., M. Mohamed, N. Anzue, T. Itoh, and I. Uchida, "In situ Raman apectroscopic studies of LiNixMn2-xO4 thin film cathod materials for lithium ion secondary batteries," Journal of Materials Chemistry, Vol. 12, 3688-3693, 2002.
doi:10.1039/b206764a

15. Li, W. J., B. Zang, and W. Lu, "Structural properties and Raman spectroscopy of La(2+4x)/3Mn1-xCuxO3 (0≤x≤0.2)," Physics Letters A, Vol. 362, 327-330, 2007.
doi:10.1016/j.physleta.2006.10.021

16. Dimri, M., A. Verma, S. Kashyap, D. Dube, O. Thakur, and C. Prakash, "Structural, dielctric and magnetic properties of NiCuZn ferrite grown by citrate precursour mehod," Materials Science and Engineering B, Vol. 133, 42-48, 2006.
doi:10.1016/j.mseb.2006.04.043

17. Li, G., G. G. Hu, H. D. Zhou, X. J. Fan, and X. G. Li, "Absorption of microwaves in La1-xSrxMnO3 manganese powders over a wide bandwidth," Journal of Applied Physics, Vol. 90, 5512-5514, 2001.
doi:10.1063/1.1415053

18. Ramey, R. and T. Lewis, "Properties of thin metal films at microwave frequencies," Journal of Applied Physics, Vol. 39, 1747-1752, 1968.
doi:10.1063/1.1656424

19. Kim, J. H., K. B. Kim, and S. H. Noh, "New density independent model for measurement of grain moisture content using microwave techniques," Journal of Electronics Engineering and Information Science, Vol. 2, 72-78, 1997.

20. Zaki, H. M., "AC conductivity and frequency dependence of the dielctric properties for copper doped magnetite," Physica B, Vol. 363, 232-244, 2005.
doi:10.1016/j.physb.2005.03.026