Vol. 11
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-02-09
Complex Mode in Rectangular Waveguide Filled with Longitudinally Magnetized Ferrite Slab
By
Progress In Electromagnetics Research M, Vol. 11, 79-87, 2010
Abstract
In microwaves, ferrites are characterized by a tensorial permeability which represents their anisotropy under a constant magnetic field. We present, in this article, a rigorous study of the formulation of the transverse operator method (TOM) with an extension to the case of the guides of rectangular waves partially charged with longitudinally magnetized ferrite. We show the existence of the complex modes in these types of structures with ferrite. A good agreement of the constant of propagation with the literature is obtained.
Citation
Hafedh Benzina, Hedi Sakli, Taoufik Aguili, and Junwu Tao, "Complex Mode in Rectangular Waveguide Filled with Longitudinally Magnetized Ferrite Slab," Progress In Electromagnetics Research M, Vol. 11, 79-87, 2010.
doi:10.2528/PIERM10010101
References

1. Colin, G. W. and J. A. R. Ball, "Mode-matching analysis of a shielded rectangular dielectric-rod waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 10, 3169-3177, Oct. 2005.

2. Vegas, A., A. Prieto, and M. A. Solano, "Optimisation of the coupled-mode method for the analysis of waveguides partially ¯lled with dielectrics of high permittivity: Application to the study of discontinuities," IEE Proceedings-H, Vol. 140, No. 5, 401-406, 1993.

3. Strube, J. and F. Arndt, "Rigorous hybrid mode analysis of the transition from rectangular waveguide to shielded dielectric image wide," IEEE Transactions on Microwave Theory and Techniques, Vol. 33, No. 5, 391-401, May 1985.
doi:10.1109/TMTT.1985.1133010

4. Mazur, M., E. Sedek, and J. Mazur, "Propagation in a ferrite circular waveguide magnetized through a rotary four-pole magnetic field," Progress In Electromagnetics Research, Vol. 68, 1-13, 2007.
doi:10.2528/PIER06072002

5. Zhou, L., L. E. Davis, and , "Calculation of phase and attenuation constants for waveguides loaded with lossy ferrite with longitudinal or transverse magnetisation," IEE Proc. Microw. Antennas Propag., Vol. 142, No. 2, 111-117, 1997.
doi:10.1049/ip-map:19971011

6. Sakli, H., H. Benzina, T. Aguili, and J. W. Tao, "Ferrite image lines studies by transverse operator method," PIERS Proceedings, 1469-1472, Beijing, China, Mar. 23-27, 2009.

7. Tao, J. W., B. Chan, and H. Baudrand, "Rigorous theoretical study of longitudinally magnetised partially filled TEM phase shifter," Electronics Letters, Vol. 26, 1329-1331, Aug. 1990.
doi:10.1049/el:19900857

8. Bolioli, S., H. Benzina, H. Baudrand, and B. Chan, "Centimeter-wave microstrip phase shifter on a ferrite-dielectric substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 37, No. 4, 698-705, Apr. 1989.
doi:10.1109/22.18842

9. Pereda, J. A., L. A. Vielva, M. A. Solano, A. Vegas, and A. Prieto, "FDTD analysis of magnetized ferrites: Application to the calculation of dispersion characteristics of ferrite-loaded waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 2, 350-357, Feb. 1995.
doi:10.1109/22.348095

10. Sakli, H., H. Benzina, T. Aguili, and J. W. Tao, "Propagation constant of a rectangular waveguides completely full of ferrite magnetized longitudinally ," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 30, No. 8, 877-883, Springer, Aug. 2009.
doi:10.1007/s10762-009-9505-7

11. Green, J. J. and F. Sandy, "Microwave characterization of partially magnetized ferrites," IEEE Transactions on Microwave Theory and Techniques, Vol. 22, 641-645, 1974.
doi:10.1109/TMTT.1974.1128306

12. Schloemann, E., "Microwave behavior of partially magnetized ferrites," Journal of Applied Physics, Vol. 1, 1204, 1970.

13. Berk, A. D., "Cavities and waveguides with inhomogeneous and anisotropic media ,", Technical report 284, Massachusetts Institute of Technology, Feb. 11, 1955.