Vol. 13
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-04-23
A Reconfigurable Active Array Antenna System with the Frequency Reconfigurable Amplifiers Based on RF MEMS Switches
By
Progress In Electromagnetics Research C, Vol. 13, 107-119, 2010
Abstract
In this paper, a frequency reconfigurable active array antenna (RAA) system, which can be reconfigurable at three different frequency bands, is proposed. The proposed RAA system is designed with a novel frequency reconfigurable front-end amplifiers (RFA) designed with the simple reconfigurable impedance matching circuits (RMC) with the MEMS switches. With the MEMS switch, the RFA is realized without any performance sacrifice especially linear characteristic. The proposed RMC is composed of a series transmission line and a shunt capacitor, and an arbitrary impedance can be transformed to any other impedance value with single switch control for a desired frequency band. The proposed RAA antenna system is composed of the RMC, RFA with the RMC, 2×2 array of reconfigurable antenna elements (RAE), as well as a reconfiguration control board (RCB) for MEMS switch control, and the validity of the proposed RMC, RFA, as well as RAA system, which is presented with the experimental results.
Citation
Seong-Sik Myoung, Jong-Gwan Yook, Soon Young Eom, Soon-Ik Jeon, Terence Wu, Rong-Lin Li, Kyutae Lim, Manos M. Tentzeris, and Joy Laskar, "A Reconfigurable Active Array Antenna System with the Frequency Reconfigurable Amplifiers Based on RF MEMS Switches," Progress In Electromagnetics Research C, Vol. 13, 107-119, 2010.
doi:10.2528/PIERC10030602
References

1. De Mingo, J., A. Valdovinos, A. Crespo, D. Navarro, and P. Garcia, "An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system," IEEE Trans. Microwave Theory and Tech., Vol. 52, No. 2, 489-497, 2004.
doi:10.1109/TMTT.2003.821909

2. Kim, H.-T., S. Jung, K. Kang, J.-H. Park, Y.-K. Kim, and Y. Kwon, "Low-loss analog and digital micromachined impedance tuners at the Ka-band," IEEE Trans. Microwave Theory and Tech., Vol. 49, No. 12, 2394-2400, 2001.
doi:10.1109/22.971626

3. Pringle, L. N., P. H. Harms, S. P. Blalock, G. N. Kiesel, E. J. Kuster, P. G. Friederich, R. J. Prado, J. M. Morris, and G. S. Smith, "A reconfigurable aperture antenna based on switched links between electrically small metallic patches," IEEE Trans. Antennas and Propagation, Vol. 52, No. 6, 1434-1445, 2004.
doi:10.1109/TAP.2004.825648

4. Cetiner, B. A., H. Jafarkhani, J.-Y. Qian, Y. H. Jae, A. Grau, and F. de Flaviis, "Multifunctional reconfigurable mems integrated antennas for adaptive mimo systems," IEEE Communications Magazine, Vol. 42, No. 12, 62-70, 2004.
doi:10.1109/MCOM.2004.1367557

5. Zhang, S., G. H. HuffJ. Feng, and J. T. Bernhard, "A pattern reconfigurable microstrip parasitic array," IEEE Trans. Antennas and Propagation, Vol. 52, No. 10, 2773-2776, 2004.
doi:10.1109/TAP.2004.834372

6. Fries, M. K., M. Grani, and R. Vahldieck, "A reconfigurable slot antenna with switchable polarization," IEEE Microwave and Wireless Component Letters, Vol. 13, No. 11, 490-492, 2003.
doi:10.1109/LMWC.2003.817148

7. Danson, J., C. Plett, and N. Tait, "Using mems capacitive switches in tunable RF amplifiers," Eurasip Journal on Wireless Communications and Networking, 2006.

8. Sinsky, J. H. and C. R. Westgate, "Design of an electronically tunable microwave impedance transformer," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 647-650, 1997.

9. Vicki Chen, L. Y., R. Forse, D. Chase, and R. A. York, "Analog tunable matching network using integrated thin-film bst capacitors," IEEE MTT-S International Microwave Symposium Digest , Vol. 1, 261-264, 2004.

10. Neo, W. C. E., X. Liu, Y. Lin, L. C. N. de Vreede, L. E. Larson, S. Spirito, A. Akhnoukh, A. de Graauw, and L. K. Nanver, "Improved hybrid sige hbt class-ab power amplifier efficiency using varactor-based tunable matching networks," Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, Vol. 108, No. 111, 2005.

11. Brown, E. R., "RF-mems switches for reconfigurable integrated circuits," IEEE Trans. Microwave Theory and Tech., Vol. 46, No. 11, 1868-1880, 1998.
doi:10.1109/22.734501

12. Wu, T., R. L. Li, S. Y. Eom, K. Lim, S. I. Jeon, J. Laskar, and M. M. Tentzeris, "A multiband/scalable reconfigurable antenna for cognitive radio base stations," IEEE Antennas and Propagation Society International Symposium, 1-4, 2008.

13. Yumin, L., D. Peroulis, S. Mohammadi, and L. P. B. Katehi, "A mems reconfigurable matching network for a class ab amplifier," IEEE Microwave and Wireless Component Letters, Vol. 13, No. 10, 437-439, 2003.
doi:10.1109/LMWC.2003.818523

14. Fukuda, A., N. Okazaki, S. Narahashi, T. Hirota, and Y. Yamao, "A 900/1500/2000-MHz triple-band reconfigurable power amplifier employing RF-MEMS switches," IEEE MTT-S International Microwave Symposium Digest, 2005.

15. Xing, H., S. Keller, Y. F. Wu, L. McCarthy, I. P. Smorchkova, D. Buttari, R. Coffie, D. S. Green, G. Parish, S. Heikman, L. Shen, N. Zhang, J. J. Xu, B. P. Keller, S. P. DenBaars, U. K. Mishra, and , "Gallium nitride based transistors," ournal of Physics-condensed Matter, Vol. 13, No. 32, 7139-7157, 2001.
doi:10.1088/0953-8984/13/32/317