Vol. 16
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-11-17
UWB Microwave Imaging for Breast Cancer Detection --- Experiments with Heterogeneous Breast Phantoms
By
Progress In Electromagnetics Research M, Vol. 16, 19-29, 2011
Abstract
The paper describes pulse-based ultra-wideband (UWB) microwave imaging experiments for breast cancer detection using heterogeneous breast phantoms with dielectric properties mimicking the human breast. Three homogeneous and seven heterogeneous breast phantoms are used in tumor detection experiments. The phantoms have dielectric permittivity and conductivity higher than previously reported experiments, as well as clutters to represent the glandular tissue in human breast. The experiments are conducted in time-domain with pulse generator and real-time oscilloscope.
Citation
Joshua Chong Yue Lai Cheong Boon Soh Erry Gunawan Kay Soon Low , "UWB Microwave Imaging for Breast Cancer Detection --- Experiments with Heterogeneous Breast Phantoms," Progress In Electromagnetics Research M, Vol. 16, 19-29, 2011.
doi:10.2528/PIERM10072001
http://www.jpier.org/PIERM/pier.php?paper=10072001
References

1. Li, X. , S. C. Hagness, and , "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, 130-132, Mar. 2001.
doi:10.1109/7260.915627

2. Fear, E. C., S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, "Enhancing breast tumor detection with near-field imaging ," IEEE Microwave Magazine, Vol. 3, 48-56, Mar. 2002.
doi:10.1109/6668.990683

3. Li, X., S. K. Davis, S. C. Hagness, D. W. van der Weide, and B. D. van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multi-layer breast phantoms," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1856-1865, Aug. 2004.
doi:10.1109/TMTT.2004.832686

4. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection --- Experimental investigation of simple tumor models," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, 3312-3319, Nov. 2005.
doi:10.1109/TMTT.2005.857330

5. Salvador, S. M. and G. Vecchi, "Experimental tests of microwave breast cancer detection on phantoms," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1705-1712, Jun. 2009.
doi:10.1109/TAP.2009.2019901

6. Klemm, M. , J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based breast cancer detection: Imaging in inhomogeneous breast phantoms," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1349-1352, 2009.
doi:10.1109/LAWP.2009.2036748

7. Lazebnik , M., E. L. Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Physics in Medicine and Biology, Vol. 50, 4245-4258, 2005.
doi:10.1088/0031-9155/50/18/001

8. Lai, J. C. Y., C. B. Soh, E. Gunawan, and K. S. Low, "Homo-geneous and heterogeneous breast phantoms for ultra-wideband microwave imaging applications," Progress In Electromagnetics Research, Vol. 100, 397-415, 2010.
doi:10.2528/PIER09121103

9. Lazebnik, M. , L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, and M. Okoniewski, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, 2637-2656, May 2007.
doi:10.1088/0031-9155/52/10/001

10. Chua, L. W., "A new UWB antenna with excellent time domain characteristics," Proc. The European Conference on Wireless Technology, 531-534, Oct. 2005.

11. O'Halloran, M., M. Glavin, and E. Jones, "Effects of fibroglan- dular tissue distribution on data-independent beamforming algorithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009.
doi:10.2528/PIER09081701