Vol. 16
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-11-18
Coherent Backscattering of Circularly Polarized Light from a Disperse Random Medium
By
Progress In Electromagnetics Research M, Vol. 16, 47-61, 2011
Abstract
To describe propagation of polarized electromagnetic wave within a disperse random medium a new Monte Carlo based technique with an adopted vector formalism has been developed. The technique has been applied for simulation of coherent backscattering of circularly polarized optical radiation from a random scattering medium. It has been found that the sign of helicity of circular polarized light does not change for a medium of point-like scatterers and can change significantly for the scatterers with the higher anisotropy. We conclude that the helicity flip of the circular polarized light can be observed in the tissue-like media. We find that this phenomenon manifests itself in case of limited number of scattering events and, apparently, can be attributed to the pulse character of incident radiation rather than to the specific form of scattering particles.
Citation
Igor Meglinski, and Vladimir L. Kuzmin, "Coherent Backscattering of Circularly Polarized Light from a Disperse Random Medium," Progress In Electromagnetics Research M, Vol. 16, 47-61, 2011.
doi:10.2528/PIERM10102106
References

1. Tuchin, V. V., Handbook of Photonics for Biomedical Science, Series in Medical Physics and Biomedical Engineering, CRC Press , 2010.
doi:10.1201/9781439806296

2. Tuchin, V. V., Handbook of Optical Biomedical Diagnostics, SPIE Optical Engineering Press, Bellingham, WA, 2002.

3. Dolin, L. S., "Development of radiative transfer theory as applied to instrumental imaging in turbid media," Phys.-Usp., Vol. 52, 519-526, 2009.
doi:10.3367/UFNe.0179.200905k.0553

4. Martelli, F., S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software, SPIE Press, , 2009.

5. Meglinski, I. V., V. L. Kuzmin, D. Y. Churmakov, and D. A. Greenhalgh, "Monte carlo simulation of coherent effects in multiple scattering," Proc. Roy. Soc. A, Vol. 461, 43-51, 2005.
doi:10.1098/rspa.2004.1369

6. Kuzmin, V. L., I. V. Meglinski, and D. Y. Churmakov, "Stochastic Modeling of coherent phenomena in strongly inhomogeneous media," J. Exp. Theor. Phys., Vol. 101, 22-32, 2005.
doi:10.1134/1.2010658

7. Berrocal, E., D. Sedarsky, M. Paciaroni, I. V. Meglinski, and M. A. Linne, "Laser light scattering in turbid media. Part II: Spatial analysis of individual scattering orders," Opt. Express, Vol. 17, 13792-13809, 2009.
doi:10.1364/OE.17.013792

8. Berrocal, E., I. V. Meglinski, D. A. Greenhalgh, and M. A. Linne, "Image transfer through the complex scattering turbid media," Laser Phys. Lett., Vol. 3, 464-467, 2006.
doi:10.1002/lapl.200610035

9. Berrocal , E., D. Y. Churmakov, V. P. Romanov, M. C. Jermy, I. V. Meglinski, "Crossed source detector geometry for novel spray diagnostic: Monte Carlo simulation and analytical results," Appl. Opt., Vol. 44, 2519-2529, 2005.
doi:10.1364/AO.44.002519

10. Meglinski, I. V. and S. J. Matcher, "The analysis of spatial distribution of the detector depth sensitivity in multi-layered inhomogeneous highly scattering and absorbing medium by the Monte Carlo technique," Opt. Spectrosc., Vol. 91, 654-659, 2001.
doi:10.1134/1.1412689

11. Meglinski, I. V., "Modelling the reflectance spectra of the optical radiation for random inhomogeneous multi-layered highlyd scattering and absorbing media by the Monte Carlo technique," Quantum Electron., Vol. 31, 1101-1107, 2001.
doi:10.1070/QE2001v031n12ABEH002108

12. Churmakov, D. Y., I. V. Meglinski, D. A. Greenhalgh, "Amending of fluorescence sensor signal localization in human skin by matching of the refractive index," J. Biomed. Opt., Vol. 9, 339-346, 2004.
doi:10.1117/1.1645796

13. Meglinski, I. V., M. Kirillin, V. L. Kuzmin, and R. Myllyla, "Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method," Opt. Lett., Vol. 33, 1581-1583, 2008.
doi:10.1364/OL.33.001581

14. Kirillin, M., I. Meglinski, E. Sergeeva, V. L. Kuzmin, and R. Myllyla, "Polarization sensitive optical coherence tomography image simulation by monte carlo modeling," Opt. Express, Vol. 18, 21714-21724, 2010.
doi:10.1364/OE.18.021714

15. Xu, M. and R. R. Alfano, "Random walk of polarized light in turbid media," Phys. Rev. Lett., Vol. 95, 213901, 2005.
doi:10.1103/PhysRevLett.95.213901

16. Kim, A. D. and M. Moscoso, "Backscattering of circularly polarized pulses," Opt. Lett., Vol. 27, 1589-1591, 2002.
doi:10.1364/OL.27.001589

17. Cai, , W., N. Xiaohui, S. R. Gayen, and R. R. Alfano, "Analytical cumulant solution of the vector radiative transfer equation investigates backscattering of circularly polarized light from turbid media," Phys. Rev.E, Vol. 74, 056605, 2006.
doi:10.1103/PhysRevE.74.056605

18. Sawicki, J., N. Kastor, and M. Xu, "Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers," Opt. Express, Vol. 16, 5728-5738, 2008.
doi:10.1364/OE.16.005728

19. Churmakov, D. Y., V. L. Kuzmin, and I. V. Meglinski, "Application of the vector Monte-Carlo method in polarisation optical coherence tomography," Quantum Electron., Vol. 36, 1009-1015, 2006.
doi:10.1070/QE2006v036n11ABEH013339

20. Binzoni, T., T. S. Leung, and D. Van De Ville, "The photo-electric current in laser-Doppler flowmetry by Monte Carlo simulations," Phys. Med. Biol., Vol. 54, N303-N318, 2009.
doi:10.1088/0031-9155/54/14/N03

21. Sobol', I. M., The Monte Carlo Method, The University of Chicago Press, Chicago, 1974.

22. Ishimaru, A., Wave Propagation and Scattering in Random Media, Academic, New York, 1978.

23. Churmakov, D. Y., I. V. Meglinski, and D. A. Greenhalgh, "Influence of refractive index matching on the photon diffuse reflectance," Phys. Med. Biol., Vol. 47, 4271-4285, 2002.
doi:10.1088/0031-9155/47/23/312

24. Kuzmin, V. L., I. V. Meglinski, and D. Y. Churmakov, "Stochastic modeling of coherent phenomena in strongly inhomogeneous media," J. Exp. Theor. Phys., Vol. 101, 22-32, 2005.
doi:10.1134/1.2010658

25. Kuzmin, , V. L. and and I. V. Meglinski, "Coherent effects of multiple scattering for scalar and electromagnetic fields: Monte-Carlo simulation and Milne-like solutions," Opt. Commun., Vol. 273, 307-310, 2007.
doi:10.1016/j.optcom.2007.01.025

26. Eddowes, M. H., T. N. Mills, and D. T. Delpy, "Monte Carlo simulations of coherent backscatter for identification of the optical coe±cients of biological tissues in vivo," Appl. Opt., Vol. 34, 2261-2267, 1995.
doi:10.1364/AO.34.002261

27. Amic, E., J. M. Luck, and T. M. Nieuwenhuizen, "Multltiple rayleigh scattering of electromagnetic waves," J. Phys. I, Vol. 7, 445-483, 1997.
doi:10.1051/jp1:1997170

28. Kuzmin, V. L. and E. V. Aksenova, "A generalized milne solution for the correlation effects of multiple light scattering with polarization," J. Exp. Theor. Phys., Vol. 96, 816-831, 2003.
doi:10.1134/1.1581936

29. Mishchenko, M. I., L. D. Travis, and A. A. Lacis, "Multiple Scattering of Light by particles," Cambridge University Press, 2006.

30. Akkermans, E., P. E. Wolf, and R. Maynard, "Theoretical-study of the coherent backscattering of light by disordered media," J. Phys. (Fr.), Vol. 49, 77-98, 1988.
doi:10.1051/jphys:0198800490107700

31. Wiersma, D. S., M. P. Van Albada, B. A. Van Tiggelen, and A. Lagendijk, "Experimental evidence for recurrent multiple scattering events of light in disordered media," Phys. Rev. Lett., Vol. 74, 4193-4196, 1995.
doi:10.1103/PhysRevLett.74.4193