Vol. 21
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-04-14
Compact Spatial Band-Pass Filters Using Frequency Selective Surfaces
By
Progress In Electromagnetics Research C, Vol. 21, 59-73, 2011
Abstract
In this paper spatial-band pass filters consisting of frequency selective surfaces (FSSs) are designed in order to realize both the desired transfer function of the filter in the frequency domain and drastic size reduction. Each FSS is made of aperture elements and patch elements. In this design method, the shape of each FSS is designed by a genetic algorithm (GA) so that the resonant curve of each FSS fits to the resonant curve which can be obtained from an equivalent circuit approach. By locating these designed FSSs at the intervals of quarter wavelength a spatial band pass filter is realized. Furthermore, a technique which controls the frequency response of each FSS has been applied to reduce the longitudinal size of filter. By this technique the FSSs are located at the intervals which are much shorter than a quarter wavelength, keeping the desired transfer function. Through a designed example it is shown that the half longitudinal length of a typical spatial filter can be obtained without any additional structure. Magnetic type spectral domain dyadic Green's functions are derived, and the characteristics of a spatial band-pass filter are calculated by means of the coupled magnetic filed integral equation which accurately takes higher order mode interactions. Derived linear matrix equations are solved using method of moment (MoM). The effectiveness of the proposed structure and its performance are verified and validated by designing and simulating an equal ripple spatial band pass filter at X-band.
Citation
Habib Ghorbaninejad-Foumani Mohammad Khalaj-Amirhosseini , "Compact Spatial Band-Pass Filters Using Frequency Selective Surfaces," Progress In Electromagnetics Research C, Vol. 21, 59-73, 2011.
doi:10.2528/PIERC10110405
http://www.jpier.org/PIERC/pier.php?paper=10110405
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.

2. Kern, D. J. and D. H. Werner, "A genetic algorithm approach to the design of ultra-thin electromagnetic band-gap absorbers," Microwave Opt. Technol. Lett., Vol. 38, No. 1, 61-64, Jul. 2003.
doi:10.1002/mop.10971

3. Kern, D. J., D. H. Werner, M. J. Wilhelm, and K. H. Church, "Genetically engineered multi-band high impedance frequency selective surfaces," Microwave Opt. Technol. Lett., Vol. 38, No. 5, 400-403, Sep. 2003.
doi:10.1002/mop.11073

4. Chen, C., "Scattering by a two-dimensional periodic array of ducting plates," IEEE Tran. Antennas Propagation, Vol. 18, 660-665, Sep. 1970.
doi:10.1109/TAP.1970.1139760

5. Abbaspou, A., K. Sarabandi, and G. M. Rebeiz, "Antenna-filter-an-antenna arrays as a class of band pass frequency selective surfaces," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 8, 1781-1789, Aug. 2004.
doi:10.1109/TMTT.2004.831572

6. Pous, R. and D. M. Pozar, "A frequency-selective surface using aperture coupled micro-strip patches," IEEE Trans. Antennas Propagation, Vol. 39, No. 12, 1763-1769, Dec. 1991.
doi:10.1109/8.121598

7. Ohira, M., H. Deguchi, M. Tsuji, and H. Shigesawa, "Multi band single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 11, 2925-2931, Nov. 2004.

8. Zhang, Y. L., W. Hong, K. Wu, J. X. Chen, and H. J. Tang, "Novel substrate integrated waveguide cavity filter with defected ground structure," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1280-1287, Apr. 2005.
doi:10.1109/TMTT.2005.845750

9. Hao, Z. C., W. Hong, J. X. Chen, X. P. Chen, and K. Wu, "Compact super wide band pass substrate integrated waveguide filters ," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 9, 2968-2977, Sep. 2005.
doi:10.1109/TMTT.2005.854232

10. Luo, G. Q., W. Hong, H. J. Tang, and K. Wu, "High performance frequency selective surface using cascading substrate integrated waveguide cavities," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 12, Dec. 2006.
doi:10.1109/LMWC.2006.885588

11. Yakovlev, A. B., A. I. Khalil, C. W. Hicks, A. Mortazawi, and M. B. Steer, "The generalized scattering matrix of closely spaced strip and slot layers in waveguide," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 1, 126-137, Jan. 2000.
doi:10.1109/22.817481

12. Hill, A. and V. K. Tripathi, "An efficient algorithm for the three-dimen-sional analysis of passive microstrip components and discontinuities for microwave and millimeter-wave integrated circuits," IEEE Trans. Microw. Theory Tech., Vol. 39, No. 1, 83-91, Jan. 1991.
doi:10.1109/22.64609

13. Ohira, M., H. Deguchi, M. Tsuji, and H. Shigesawa, "Novel waveguide filters with multiple attenuation poles using dual-behavior resonance of frequency-selective surfaces," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 11, 3320-3326, Nov. 2005.
doi:10.1109/TMTT.2005.857334

14. Itoh, T., "Spectral domain immitance approach for dispersion characteristics of generalized printed transmission lines ," IEEE Trans. Microw. Theory Tech., Vol. 28, No. 11, 733-736, Jul. 1980.

15. Schmidt, L. P. and T. Itoh, "Spectral domain analysis of dominant and higher order modes in fin-lines," IEEE Trans. Microw. Theory Tech., Vol. 28, No. 11, 981-985, Sep. 1980.
doi:10.1109/TMTT.1980.1130206

16. Chan, C. H., K. T. Ng, and A. B. Kouki, "A mixed spectral-domain approach for dispersion analysis of suspended planar transmission lines with pedestals ," IEEE Trans. Microw. Theory Tech., Vol. 37, No. 11, 1716-1723, Sep. 1989.
doi:10.1109/22.41036

17. Amari, S., J. Bornemann, and R. Vahldieck, "Fast and accurate analysis of waveguide filters by the coupled integral equations technique ," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 9, Sep. 1997.

18. HFSS Release 10.0, Ansoft Corp., 2003.