Vol. 16
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-01-19
Accuracy of Approximate Formulas for Internal Impedance of Tubular Cylindrical Conductors for Large Parameters
By
Progress In Electromagnetics Research M, Vol. 16, 171-184, 2011
Abstract
Exact formulas for internal impedance per unit length of tubular cylindrical conductors energized by time-harmonic current involve Bessel functions. These functions are defined by infinite series, which yield unstable and often erroneous results for complex arguments of large magnitudes. Although it is well known how to evaluate Bessel functions numerically and many routines are now available to perform the actual computation, the available software routines often fail when computing equations that consist of a product and a quotient of Bessel functions under large complex or real arguments. For such cases, different approximate formulas can be used. In this paper, three types of approximate formulas for internal impedance of tubular cylindrical conductors are compared with respect to numerical stability and accuracy.
Citation
Dino Lovrić Vedran Boras Slavko Vujević , "Accuracy of Approximate Formulas for Internal Impedance of Tubular Cylindrical Conductors for Large Parameters," Progress In Electromagnetics Research M, Vol. 16, 171-184, 2011.
doi:10.2528/PIERM10121503
http://www.jpier.org/PIERM/pier.php?paper=10121503
References

1. Stratton, J. A., Electromagnetic Theory, 532-533, IEEE Press Series on Electromagnetic Wave Theory, Wiley-IEEE Press, 2007.

2. Saraj·cev, P. and S. Vujevie, "Grounding grid analysis: Historical background and classification of methods," International Review of Electrical Engineering (IREE), Vol. 4, No. 4, 670-683, 2009.

3. Dommel, H. W., EMTP Theory Book, 2nd Ed., Microtran Power System Analysis Corporation, Vancouver, 1992.

4. Dawalibi, F. P. and R. D. Southey, "Analysis of electrical interference from power lines to gas pipelines --- Part I: Computation methods," IEEE Transactions on Power Delivery, Vol. 4, No. 3, 1840-1846, 1989.
doi:10.1109/61.32680

5. Moore, J. and R. Pizer, Moment Methods in Electromagnetics --- Techniques and Applications, John Wiley & Sons, New York, 1984.

6. Stevenson, W. D., Elements of Power System Analysis, 2nd Ed., Vol. 76, No. 93, McGraw-Hill, New York, 1962.

7. Spiegel, M. R. and J. Liu, "Mathematical Handbook of Formulas and Tables,", Schaum's Outlines Series, 150-159, McGraw-Hill, New York, 1999.

8. Jeffrey, A. and H.-H. Dai, "Handbook of Mathematical Formulas and Integrals," Elsevier, Amsterdam, 289-299, 2008.

9. Abramowitz, M. and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Applied Mathematical Series 55', 358-385, National Bureau of Standards, 1964.

10. Paul, C. R., "Analysis of Multiconductor Transmission Lines," John Wiley & Sons, New York, 164-167, 1994.

11. Wang, Y. J. and S. J. Liu, "A review of methods for calculation of frequency-dependent impedance of overhead power transmission lines," Proc. Natl. Sci. Counc. ROC(A), Vol. 25, No. 6, 329-338, 2001.

12. Amos, D. E., "A subroutine package for Bessel functions of a complex argument and nonnegative order,", SAND85-1018, Sandia National Laboratories, Albuquerque, NM., 1985.

13. Amos, D. E., "Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order," ACM Transactions on Mathematical Software, Vol. 12, No. 3, 265-273, 1986.
doi:10.1145/7921.214331

14. Nahman, N. S. and D. R. Holt, "Transient analysis of coaxial cables using the skin effect approximation A + Bs," IEEE Transactions on Circuit Theory, Vol. 19, No. 5, 443-{451, 1972.
doi:10.1109/TCT.1972.1083513

15. Semlyen, A. and A. Deri, "Time domain modeling of frequency dependent three phase transmission line impedance," IEEE Transactions on Power Apparatus and Systems, Vol. 104, No. 6, 1549-1555, 1985.
doi:10.1109/TPAS.1985.319171

16. Wedepohl, L. M. and D. J. Wilcox, "Transient analysis of underground power transmission systems: System-model and wave propagation characteristics," EE Proceedings on Generation, Transmission and Distribution, Vol. 20, No. 2, 253-260, 1973.

17. Vujevic , S., V. Boras, and P. Saraj·cev, "A novel algorithm for internal impedance computation of solid and tubular cylindrical conductors," International Review of Electrical Engineering (IREE), Vol. 4, No. 6, Part B, 1418-1425, 2009.

18. Mingli, W. and F. Yu, "Numerical calculations of internal impedance of solid and tubular cylindrical conductors under large parameters," IEE Proceedings --- Generation, Transmission and Distribution, Vol. 151, No. 1, 67-72, 2004.
doi:10.1049/ip-gtd:20030981

19. Knight, D. W., "Practical continuous functions and formulae for the internal impedance of cylindrical conductors,", March 2010, http://www.g3ynh.info/zdocs/comps/Zint.pdf.

20. Schelkunoff, S. A., "The electromagnetic theory of coaxial transmission lines and cylindrical shields," Bell System Technical Journal, 532-578, 1934.