Vol. 17
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-02-17
Effects of Dielectric Heterogeneity in the Performance of Breast Tumour Classifiers
By
Progress In Electromagnetics Research M, Vol. 17, 73-86, 2011
Abstract
Breast cancer detection using Ultra Wideband Radar has been thoroughly investigated over the last decade. This breast imaging modality is based on the dielectric properties of normal and cancerous breast tissue at microwave frequencies. However, the dielectric properties of benign and malignant tumours are very similar, so tumour classification based on dielectric properties alone is not feasible. Therefore, classification methods based on the Radar Target Signature of tumours need to be further developed to classify tumours as either benign or malignant. Several studies have addressed the issue of tumour classification based on the size, shape and surface texture of the tumour. In general, these studies examined the performance of classification algorithms in primarily dielectrically homogeneous breast models. These relatively simplistic models do not provide a realistic test platform for the evaluation of tumour classification algorithms. This paper examines the classification of tumours under realistic dielectrically heterogeneous conditions. Four different heterogeneous scenarios are considered, with varying levels of heterogeneity and complexity. In this paper, the performance and robustness of tumour classification algorithms under these realistic conditions are examined and discussed.
Citation
Raquel Cruz Conceicao Martin O'Halloran Martin Glavin Edward Jones , "Effects of Dielectric Heterogeneity in the Performance of Breast Tumour Classifiers," Progress In Electromagnetics Research M, Vol. 17, 73-86, 2011.
doi:10.2528/PIERM10122402
http://www.jpier.org/PIERM/pier.php?paper=10122402
References

1. Hagness, S. C., A. Taflove, J. E. Bridges, "Two dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440

2. Fear, E. C. and M. A. Stuchly, "Microwave system for breast tumor detection," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 11, 470-472, 1999.
doi:10.1109/75.808040

3. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1841-1853, 2000.
doi:10.1109/22.883861

4. Bond, E. J., X. Li, S. C. Hagness, and B. D. V. Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propogation, Vol. 51, No. 8, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446

5. Nilavalan, R. , A. Gbedemah, I. J. Craddock, X. Li, and S. C. Hagness, "Numerical investigation of breast tumour detection using multi-static radar," IET Electronics Letters, Vol. 39, No. 25, 1787-1789, 2003.
doi:10.1049/el:20031183

6. Bindu, G. , S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149{-169, 2006.
doi:10.2528/PIER05081802

7. Zainud-Deen, S. H. , W. M. Hassen, E. El deen Ali, and K. H. Awadalla, "Breast cancer detection using a hybrid finite di®erence frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703

8. Zhang, H. , S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701

9. Maskooki, A. , E. Gunawan, C. B. Soh, and K. S. Low, "Frequency domain skin artifact removal method for ultra-wideband breast cancer detection," Progress In Electromagnetics Research, Vol. 98, 299-314, 2009.
doi:10.2528/PIER09101302

10. AlShehri, S. A. and S. Khatun, "UWB imaging for breast cancer detection using neural network," Progress In Electromagnetics Research C, Vol. 7, 79-93, 2009.
doi:10.2528/PIERC09031202

11. Byrne, D. , M. O'Halloran, M. Glavin, and E. Jones, "Data independent radar beamforming algorithms for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 331-348, 2010.
doi:10.2528/PIER10061001

12. Byrne, D. , M. O'Halloran, E. Jones, and M. Glavin, "Transmitter-grouping robust capon beamforming for breast cancer detection," Progress In Electromagnetics Research, Vol. 108, 401-416, 2010.
doi:10.2528/PIER10090205

13. Byrne , D. , M. O'Halloran, M. Glavin, and E. Jones, "Contrast enhanced beamforming for breast cancer detection," Progress In Electromagnetics Research B, Vol. 28, 219-234, 2011.

14. Huynh, P. T. , A. M. Jarolimek, and S. Daye, "The false-negative mammogram," Radio Graphics, Vol. 18, 1137-1154, 1998.

15. Elmore, J. G., M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, "Ten-year risk of false positive screening mammograms and clinical breast examinations," The New England Journal of Medicine, Vol. 338, No. 16, 1089-1096, 1998.
doi:10.1056/NEJM199804163381601

16. Davis, S. K. , B. D. V. Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 237-246, 2008.
doi:10.1109/TBME.2007.900564

17. Conceicao , R. C., , M. O'Halloran, E. Jones, and M. Glavin, "Investigation of classifiers for early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research, Vol. 105, 295-311, 2010.
doi:10.2528/PIER10051904

18. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machines for the classification of early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
doi:10.2528/PIERB10062407

19. McGinley, , B., M. O'Halloran, R. C. Conceicao, F. Morgan, M. Glavin, and E. Jones, "Spiking neural networks for breast cancer classification using radar target signatures," Progress In Electromagnetics Research C, Vol. 17, 79-94, 2010.
doi:10.2528/PIERC10100202

20. Conceicao, R. C. , M. O'Halloran, M. Glavin, and E. Jones, "Evaluation of features and classifiers for classification of early-stage breast cancer," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 1-14, 2011.
doi:10.1163/156939311793898350

21. Conceicao, R. C., , M. O'Halloran, D. Byrne, E. Jones, and M. Glavin, "Tumor classification using radar target signatures," PIERS Proceedings, 346-349, Cambridge, USA, 2010.

22. Chen, Y. , E. Gunawan, K. S. Low, S. Wang, C. B. Soh, and T. C. Putti, "Effect of lesion morphology on microwave signature in 2-D ultra-wideband breast imaging," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 8, 2011-2021, 2008.
doi:10.1109/TBME.2008.921136

23. Chen, Y. , I. J. Craddock, P. Kosmas, M. Ghavami, and P. Rapajic, "Application of the MIMO radar technique for lesion classi¯cation in UWB breast cancer detection," 17th European Signal Processing Conference (EUSIPCO), 759-763, Glasgow, Scotland, 2009.

24. Chen, Y. , I. J. Craddock, P. Kosmas, M. Ghavami, and P. Rapajic, "Multiple-input multiple-output radar for lesion classification in ultrawideband breast imaging," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 1, 187-201, 2010.
doi:10.1109/JSTSP.2009.2038975

25. Chen, Y., I. J. Craddock, and P. Kosmas, "Feasibility study of lesion classi¯cation via contrast-agent-aided UWB breast imaging," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 5, 1003-1007, 2010.
doi:10.1109/TBME.2009.2038788

26. Teo, J. , Y. Chen, C. B. Soh, E. Gunawan, K. S. Low, T. C. Putti, and S. Wang, "Breast lesion classification using ultrawideband early time breast lesion response," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2604-2613, 2010.
doi:10.1109/TAP.2010.2050423

27., , University of Wisconsin --- Computational Electromagnetics Laboratory (UWCEM). Last Accessed: 22/09/2010. Availablefrom: http://uwcem.ece.wisc.edu/.

28. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and , "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001

29. Lazebnik, , M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, and T. M. Breslin, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002

30. Muinonen, K., "Introducing the gaussian shape hypothesis for asteroids and comets," Astronomy and Astrophysics,, Vol. 332, 1087-1098, 1998.

31. Muinonen, K., Light Scattering by Stochastically Shaped Particles,in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier and L. D. Travis (eds.), Chapter 11, Academic Press, 2000.