Vol. 26
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-12-12
Novel Capacitive Gap-Coupled Bandpass Filter Using Non-Uniform Arbitrary Image Impedance
By
Progress In Electromagnetics Research C, Vol. 26, 111-121, 2012
Abstract
This paper introduces a new design technique for a capacitive gap-coupled bandpass filter (BPF) using non-uniform arbitrary image impedances. Based on the proposed BPF equivalent circuit model, the filter's design equations are derived, and they are validated from comparisons of the calculated and simulated results. For this theoretical verification, the BPF using non-uniform arbitrary image impedances is designed using the specifications of: center frequency (fc)=5.8 GHz, fractional bandwidth (FBW)=3.5%, and filter stage (N)=3. The calculated and simulated results of the designed filter show good agreement. The BPF using the proposed design method could provide an advantage that one can arbitrarily determine two different image impedances, which ultimately affects the BPF's coupling gaps and line widths. This could result in suitable filter dimensions, i.e., gaps and line width, for a conventional low resolution photolithography fabrication although a low or high dielectric constant substrate is used for the design.
Citation
Dong-Jin Jung Kai Chang , "Novel Capacitive Gap-Coupled Bandpass Filter Using Non-Uniform Arbitrary Image Impedance," Progress In Electromagnetics Research C, Vol. 26, 111-121, 2012.
doi:10.2528/PIERC11102409
http://www.jpier.org/PIERC/pier.php?paper=11102409
References

1. Matthaei, G. L., L. Young, and E. M. T. Johns, Microwave Filters, Impedance Matching Networks, and Coupling Structures, Arthech House, Dedham, 1980.

2. Cohn, S. B., "Direct coupled resonator filters," Proc. IRE, Vol. 45, No. 2, 187-196, Feb. 1957.

3. Cohn, S. B., "Parallel-coupled transmission-line-resonator filters," IRE Trans. Microw. Theory Tech., Vol. 6, No. 2, 223-231, Apr. 1958.

4. Ahn, D., C.-S. Kim, M.-H. Chung, D.-H. Lee, D.-W. Lew, and H.- J. Hong, "The design of parallel coupled line filter with arbitrary image impedance," IEEE MTT-S Int. Microwave Symp. Dig., Vol. 2, 909-912, Jun. 1998.

5. Gan, H., D. Lou, and D. Yang, "Compact microstrip bandpass filter with sharp transition bands," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 3, 107-109, Mar. 2006.

6. Ahn, D., J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 1, 86-93, Jan. 2001.

7. Jung, D.-J. and K. Chang, "Low-pass filter design through the accurate analysis of electromagnetic-bandgap geometry on the ground plane," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 7, 1798-1805, Jul. 2009.

8. Kuo, T.-N., S.-C. Lin, and C. H. Chen, "Compact ultra-wideband bandpass filters using composite microstrip-coplanar waveguide structure," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 10, 3772-3778, Oct. 2006.

9. Jung, D.-J. and K. Chang, "Accurate modeling of microstrip dumbbell shaped slot resonator (DSSR) for miniaturized tunable resonator and band-pass filter," Progress In Electromagnetics Research C, Vol. 23, 137-150, 2011.

10. Makimoto, M. and S. Yamashita, "Bandpass filters using parallel coupled stripline stepped impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 28, No. 12, 1413-1417, Dec. 1980.

11. Bonache, J., I. Gil, J. Garcia-Garcia, and F. Martin, "Novel microstrip band pass filters based on complementary split rings resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, 265-271, Jan. 2006.

12. Jung, D.-J., J.-K. Lee, and K. Chang, "Wideband banpass filter using microstrip ring," Microw. Opt. Technol. Lett., Vol. 53, No. 1, 154-155, Jan. 2011.

13. Lim, J.-S., Y.-T. Lee, C.-S. Kim, D. Ahn, and S. Nam, "A vertically periodic defected ground structure and its application in reducing the size of microwave circuits," IEEE Microw. Wireless Compon. Lett., Vol. 12, No. 12, 240-242, Dec. 2002.

14. Jung, D.-J. and K. Chang, "Microstrip diplexer design for X-band RF/microwave front-end applications," IEEE Int. Symp. on Antennas and Propag., 5-7, Aug. 2011.

15. Ting, S.-W., K.-W. Tam, and R. P. Martins, "Miniaturized microstrip lowpass filter with wide stopband using double equilateral U-shaped defected ground structure," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 5, 240-242, May 2006.

16. Wang, X.-H., B.-Z. Wang, and K. J. Chen, "Compact broadband dual-band bandpass filters using slotted ground structure," Progress In Electronmagnetics Research, Vol. 82, 151-166, 2008.