Vol. 23
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-01-30
Experimental Assessment of Microwave Diagnostic Tool for Ultra-Wideband Breast Cancer Detection
By
Progress In Electromagnetics Research M, Vol. 23, 109-121, 2012
Abstract
An ultra-wideband microwave imaging system that employs a heterogeneous breast phantom and covers the ultra-wideband (UWB) frequency range (3.1 GHz to 10.6 GHz) is presented. The platform scanning system allows monostatic and bistatic mode of operation. In this work, developed heterogeneous phantoms are used to mimic the realistic breast tissues. A utilized tapered slot antenna array allows for a high resolution hemispherical scan, achieved by rotating the imaged object on a turntable. Full design details of the scanning system and the utilized post-processing algorithm are explained. To validate the reliability of the presented system, the results of several imaging cases, including the challenging low dielectric contrast case, are presented.
Citation
Aslina Abu Bakar David Ireland Amin M. Abbosh Yifan Wang , "Experimental Assessment of Microwave Diagnostic Tool for Ultra-Wideband Breast Cancer Detection," Progress In Electromagnetics Research M, Vol. 23, 109-121, 2012.
doi:10.2528/PIERM11122102
http://www.jpier.org/PIERM/pier.php?paper=11122102
References

1. Jacobi, J. H., L. E. Larsen, and C. T. Hast, "Water-immersed microwave antennas and their application to microwave interrogation of biological targets," IEEE Transactions on Microwave Theory and Techniques, Vol. 27, 70-78, 1979.
doi:10.1109/TMTT.1979.1129561

2. Meaney, P., S. Pendergrass, M. Fanning, and K. Paulsen, "Importance of using a reduced contrast coupling medium in 2D microwave breast imaging," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 333-355, 2003.
doi:10.1163/156939303322235851

3. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array - Experimental results," IEEE Transactions on Antennas and Propagation, Vol. 57, 1692-1704, 2009.
doi:10.1109/TAP.2009.2019856

4. Klemm, M., I. Craddock, A. Preece, J. Leendertz, and R. Benjamin, "Evaluation of a hemi-spherical wideband antenna array for breast cancer imaging," Radio Science, Vol. 43, RS6S06, 2008.

5. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Dielectric studies of corn syrup for applications in microwave breast imaging," Progress In Electromagnetics Research, Vol. 59, 175-186, 2006.
doi:10.2528/PIER05072801

6. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802

7. Lazaro, A., D. Girbau, and R. Villarino, "Simulated and experimental investigation of microwave imaging using UWB," Progress In Electromagnetics Research, Vol. 94, 263-280, 2009.
doi:10.2528/PIER09061004

8. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Transactions on Biomedical Engineering, Vol. 55, 2792-2800, 2008.
doi:10.1109/TBME.2008.2002130

9. Bakar, A. A., A. Abbosh, P. Sharpe, M. E. Bialkowski, and Y. Wang, "Heterogeneous breast phantom for ultra wideband microwave imaging," Microwave and Optical Technology Letters, Vol. 53, 1595-1598, 2011.
doi:10.1002/mop.26046

10. Bakar, A. A., A. Abbosh, P. Sharpe, and M. Bialkowski, "Artificial breast phantom for microwave imaging modality," IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), 385-388, 2010.
doi:10.1109/IECBES.2010.5742267

11. Campbell, A. and D. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Physics in Medicine and Biology, Vol. 37, 193, 1992.

12. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Transactions on Biomedical Engineering, Vol. 35, 257-263, 1988.
doi:10.1109/10.1374

13. William, Q. H. L., T. Joines, and G. Ybarra, Electromagnetic Imaging of Biological Systems, 2006.

14. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, and T. M. Breslin, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, 6093-6116, 2007.
doi:10.1088/0031-9155/52/20/002

15. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, and J. Harter, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2007.
doi:10.1088/0031-9155/52/20/002

16., "SEER cancer statistics review,", U. Centers for Disease Control and Prevention Division of Cancer Prevention and Control, 1975-2007..
doi:10.1088/0031-9155/52/20/002

17. Lai, J. C. Y., C. B. Soh, E. Gunawan, and K. S. Low, "Homogeneous and heterogeneous breast phantoms for ultra wideband microwave imaging applications," Progress In Electromagnetics Research, Vol. 100, 397-415, 2010.
doi:10.2528/PIER09121103

18. Wang, Y., A. Bakar, and M. Bialkowski, "Reduced size UWB uniplanar tapered slot antennas without and with corrugations," Microwave and Optical Technology Letters, Vol. 53, 830-836, 2011.
doi:10.1002/mop.25878

19. Ireland, D. and M. E. Bialkowski, "Microwave head imaging for stroke detection," Progress In Electromagnetics Research M, Vol. 21, 163-175, 2011.
doi:10.2528/PIERM11082907