Vol. 28
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-04-09
Area and Power Optimization of 802.15.4a UWB Pulse Low Noise Amplifiers by Genetic Algorithms
By
Progress In Electromagnetics Research C, Vol. 28, 155-164, 2012
Abstract
An Ultra Wide Band (UWB) Low Noise Amplifier (LNA) for 802.15.4a UWB PHY (physical layer) is proposed. The amplifier is designed using IHP Microelectronis CMOS 0.25 μm technology for lower price. The LNA area, power, and performance was optimized using the Genetic Algorithm (GA). The optimization goals included inductance values, power consumption, and performance in the frequency domain using S-Parameters, then fine tuned in the time domain using the reference UWB pulses of the 802.15.4a standards. The LNA consumes around 10mW excluding the output buffer stage, has a gain of 11 to 15 dB, a 1 dB compression point of -9 dBm, and five inductors with a total value around 10 nH.
Citation
Loay D. Khalaf, "Area and Power Optimization of 802.15.4a UWB Pulse Low Noise Amplifiers by Genetic Algorithms," Progress In Electromagnetics Research C, Vol. 28, 155-164, 2012.
doi:10.2528/PIERC12021105
References

1. Bevilacqua, A. and A. Niknejad, "An ultrawideband CMOS low-noise amplifier for 3.1-10.6 GHz wireless receivers," IEEE JSSC, Vol. 39, No. 2, 2259-2268, Dec. 2004.

2. Craciunescu, A. S. and S. Gong, "Ultra-wideband low-noise amplifier design for 3.1-4.8 GHz," Proc. GigaHertz, 291-294, Uppsala, Sweden, 2005.

3. Li, J.-Y., W.-J. Lin, M.-P. Houng, and L.-S. Chen, "A compact wideband matching 0.18-μm CMOS UWB low-noise amplifier using active feedback technique," Progress In Electromagnetics Research C, Vol. 16, 161-169, 2010.
doi:10.2528/PIERC10090201

4. , , , Wireless Personal Area Networks Specification, IEEE Std. 802.1-5.4a, 2007, http://standards.ieee.org/getieee802/download/802.1-5.4a-2007.pdf.

5. Williams, A. and F. Taylor, Electronic Filter Design Handbook, 4th Edition, McGraw-Hill, 2006.

6. Lee, T. H., The Design of CMOS Radio-frequency Integrated Circuits, 2nd Edition, Cambridge University Press, Cambridge, 2003.

7. Khalaf, L., "UWB antenna and LNA receiver simultaneous matching," Int. Conf. on High Performance Computing and Simulation (HPCS), 744-749, Istanbul, Turkey, Jul. 2011.

8. Leung, B. H., VLSI for Wireless Communication, 2nd Edition, Springer, 2011.
doi:10.2528/PIERB09062302

9. Demirel, S., F. Gunes, and U. Ozkaya, "Design of an ultra-wideband, low noise amplifier using a single transistor: A typical application example," Progress In Electromagnetics Research B, Vol. 16, 371-387, 2009.

10. Crain, E. and M. Perrott, "A numerical design approach for high speed, differential, resistor-loaded, CMOS amplifiers," Proc. of the 2004 International Symposium on Circuits and Systems, ISCAS'04, 508-511, May 2003.
doi:10.1002/(SICI)1522-6301(199701)7:1<108::AID-MMCE7>3.0.CO;2-R

11. Khalaf, L. and A. Peterson, "Performance of the simulated annealing and genetic algorithms for the design of periodic devices," Int. J. Microw. Mill.-wave Comput.-aided Eng., Vol. 7, No. 12, 108-116, 1997.
doi:10.1109/MWSCAS.2006.382070

12. Wang, Y. and K. Iniewski, "A low power CMOS low noise amplifier for 3-10 GHz ultra-wideband wireless receivers," 49th IEEE International Midwest Symposium on Circuits and Systems, MWSCAS'06, Vol. 1, 353-357, Aug. 2006.

13. Bruccoleri, F., E. Klumpernik, and B. Nauta, "Noise cancelling in wideband CMOS LNA's," IEEE ISSCC Dig. Tech. Papers, 406-2268, 2002.
doi:10.1016/j.vlsi.2008.09.007

14. Shahroury, F. and C. Wu, "A 1-V RF-CMOS LNA design utilizing the technique of capacitive feedback matching network," Integration, the VLSI Journal, Vol. 42, No. 2, 83-88, Jan. 2009.