Vol. 24
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-06-07
A Novel RC-FDTD Algorithm for the Drude Dispersion Analysis
By
Progress In Electromagnetics Research M, Vol. 24, 251-264, 2012
Abstract
One of the main techniques for the Finite-Difference Time-Domain (FDTD) analysis of dispersive media is the Recursive Convolution (RC) method. The idea here proposed for calculating the updating FDTD equation is based on the Laplace transform and is applied to the Drude dispersion case. A modified RC-FDTD algorithm is then deduced. We test our algorithm by simulating gold and silver nanospheres exposed to an optical plane wave and comparing the results with the analytical solution. The modified algorithm guarantees a better overall accuracy of the solution, in particular at the plasmonic resonance frequencies.
Citation
Antonino Cala' Lesina, Alessandro Vaccari, and Alessandro Bozzoli, "A Novel RC-FDTD Algorithm for the Drude Dispersion Analysis," Progress In Electromagnetics Research M, Vol. 24, 251-264, 2012.
doi:10.2528/PIERM12041904
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. on Antennas and Propagat., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

2. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.

3. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTF implementation of the CFS-PML for arbitrary media," Microwave and Optical Technology Letters, Vol. 27, No. 5, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

4. Sullivan, D. M., "Frequency-dependent FDTD methods using Z transforms," IEEE Trans. on Antennas and Propagat., Vol. 40, 1223-1230, 1992.
doi:10.1109/8.182455

5. Gandhi, O. P., B.-H. Gao, and J.-Y. Chen, "A frequency-dependent finite-difference time-domain formulation for general dispersive media," IEEE Trans. on Microwave Theory and Tech., Vol. 41, 658-665, 1993.
doi:10.1109/22.231661

6. Young, J. L., "Propagation in linear dispersive media: Finite difference time-domain methodologies," IEEE Trans. on Antennas and Propagat., Vol. 43, 422-426, 1995.
doi:10.1109/8.376042

7. Pereda, J. A., L. A. Vielva, A. Vegas, and A. Prieto, "Statespace approach to the FDTD formulation for dispersive media," IEEE Trans. on Magn., Vol. 31, 1602-1605, 1995.
doi:10.1109/20.376339

8. Kelly, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. on Antennas and Propagat., Vol. 44, 792-797, 1996.
doi:10.1109/8.509882

9. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave Guided Wave Lett., Vol. 7, 121-123, 1997.
doi:10.1109/75.569723

10. Chen, Q., M. Katsuari, and P. H. Aoyagi, "An FDTD formulation for dispersive media using a current density," IEEE Trans. on Antennas and Propagat., Vol. 46, 1739-1746, 1998.
doi:10.1109/8.736632

11. Pereda, J. A., A. Vegas, and A. Prieto, "FDTD modeling of wave propagation in dispersive media by using the Mobius transformation technique," IEEE Trans. on Microwave Theory and Tech., Vol. 50, 1689-1695, 2002.
doi:10.1109/TMTT.2002.800388

12. Okoniewski, M. and E. Okoniewska, "Drude dispersion in ADE FDTD revisited," Electronics Letters, Vol. 42, No. 9, 503-504, 2006.
doi:10.1049/el:20060328

13. Kong, S., J. J. Simpson, and V. Backman, "ADE-FDTD scattered-field formulation for dispersive materials," IEEE Microwave and Wireless Components Lett., Vol. 18, No. 1, 4-6, Jan. 1, 2008.
doi:10.1109/LMWC.2007.911970

14. Shibayama, J., et al. "Simple trapezoidal recursive convolution technique for the frequency-dependent FDTD analysis of a drude-lorentz model," IEEE Photonics Technology Letters, Vol. 21, No. 2, 100-102, Jan. 15, 2009.
doi:10.1109/LPT.2008.2009003

15. Alsunaidi, M. A. and A. A. Al-Jabr, "A general ADE-FDTD algorithm for the simulation of dispersive structures," IEEE Photonics Technology Letters, Vol. 21, No. 12, 817-819, Jun. 15, 2009.
doi:10.1109/LPT.2009.2018638

16. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603

17. Luebbers, R. J., F. Hunsberger, and K.S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. on Antennas and Propagat., Vol. 39, No. 1, 29-34, 1991.
doi:10.1109/8.64431

18. Kolwas, K., A. Derkachova, and M. Shopa, "Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 110, 1490-1501, 2009.
doi:10.1016/j.jqsrt.2009.03.020

19. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "mplementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics application," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.

20. Paris, A., A. Vaccari, A. Cala' Lesina, E. Serra, and L. Calliari, "Plasmonic scattering by metal nanoparticles for solar cells," Plasmonics, 1-10, March 8, 2012.

21. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.

22. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, 1998.
doi:10.1002/9783527618156.ch1

23. Laakso, I., S. Ilvonen, and T. Uusitupa, "Performance of convolutional PML absorbing boundary conditions in finite-difference time-domain SAR calculations," Phys. Med. Biol. , Vol. 52, 7183-7192, 2007.
doi:10.1088/0031-9155/52/23/027

24. Pontalti, R., L. Cristoforetti, and L. Cescatti, "The frequency dependent FD-TD method for multi-frequency results in microwave hyperthermia treatment simulation," Phys. Med. Biol., Vol. 38, 1283-1298, 1993.
doi:10.1088/0031-9155/38/9/008

25. Vaccari, A., R. Pontalti, C. Malacarne, and L. Cristoforetti, "A robust and e±cient subgridding algorithm for finite-difference time-domain simulations of Maxwell's equations," J. Comput. Phys., Vol. 194, 117-139, 2003.
doi:10.1016/j.jcp.2003.09.002