1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. on Antennas and Propagat., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693
2. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.
3. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTF implementation of the CFS-PML for arbitrary media," Microwave and Optical Technology Letters, Vol. 27, No. 5, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
4. Sullivan, D. M., "Frequency-dependent FDTD methods using Z transforms," IEEE Trans. on Antennas and Propagat., Vol. 40, 1223-1230, 1992.
doi:10.1109/8.182455
5. Gandhi, O. P., B.-H. Gao, and J.-Y. Chen, "A frequency-dependent finite-difference time-domain formulation for general dispersive media," IEEE Trans. on Microwave Theory and Tech., Vol. 41, 658-665, 1993.
doi:10.1109/22.231661
6. Young, J. L., "Propagation in linear dispersive media: Finite difference time-domain methodologies," IEEE Trans. on Antennas and Propagat., Vol. 43, 422-426, 1995.
doi:10.1109/8.376042
7. Pereda, J. A., L. A. Vielva, A. Vegas, and A. Prieto, "Statespace approach to the FDTD formulation for dispersive media," IEEE Trans. on Magn., Vol. 31, 1602-1605, 1995.
doi:10.1109/20.376339
8. Kelly, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. on Antennas and Propagat., Vol. 44, 792-797, 1996.
doi:10.1109/8.509882
9. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave Guided Wave Lett., Vol. 7, 121-123, 1997.
doi:10.1109/75.569723
10. Chen, Q., M. Katsuari, and P. H. Aoyagi, "An FDTD formulation for dispersive media using a current density," IEEE Trans. on Antennas and Propagat., Vol. 46, 1739-1746, 1998.
doi:10.1109/8.736632
11. Pereda, J. A. , A. Vegas, and A. Prieto, "FDTD modeling of wave propagation in dispersive media by using the Mobius transformation technique," IEEE Trans. on Microwave Theory and Tech., Vol. 50, 1689-1695, 2002.
doi:10.1109/TMTT.2002.800388
12. Okoniewski, M. and E. Okoniewska, "Drude dispersion in ADE FDTD revisited," Electronics Letters, Vol. 42, No. 9, 503-504, 2006.
doi:10.1049/el:20060328
13. Kong, S., J. J. Simpson, and V. Backman, "ADE-FDTD scattered-field formulation for dispersive materials," IEEE Microwave and Wireless Components Lett., Vol. 18, No. 1, 4-6, Jan. 1, 2008.
doi:10.1109/LMWC.2007.911970
14. Shibayama, J., et al., "Simple trapezoidal recursive convolution technique for the frequency-dependent FDTD analysis of a drude-lorentz model," IEEE Photonics Technology Letters, Vol. 21, No. 2, 100-102, Jan. 15, 2009.
doi:10.1109/LPT.2008.2009003
15. Alsunaidi, M. A. and A. A. Al-Jabr, "A general ADE-FDTD algorithm for the simulation of dispersive structures," IEEE Photonics Technology Letters, Vol. 21, No. 12, 817-819, Jun. 15, 2009.
doi:10.1109/LPT.2009.2018638
16. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603
17. Luebbers, R. J., F. Hunsberger, and K.S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. on Antennas and Propagat., Vol. 39, No. 1, 29-34, 1991.
doi:10.1109/8.64431
18. Kolwas, K., A. Derkachova, and M. Shopa, "Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 110, 1490-1501, 2009.
doi:10.1016/j.jqsrt.2009.03.020
19. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "mplementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics application," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.
20. Paris, A., A. Vaccari, A. Cala' Lesina, E. Serra, and L. Calliari, "Plasmonic scattering by metal nanoparticles for solar cells," Plasmonics, 1-10, March 8, 2012.
21. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York and London, 1941.
22. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1998.
doi:10.1002/9783527618156.ch1
23. Laakso, I., S. Ilvonen, and T. Uusitupa, "Performance of convolutional PML absorbing boundary conditions in finite-difference time-domain SAR calculations," Phys. Med. Biol. , Vol. 52, 7183-7192, 2007.
doi:10.1088/0031-9155/52/23/027
24. Pontalti, R. , L. Cristoforetti, and L. Cescatti, "The frequency dependent FD-TD method for multi-frequency results in microwave hyperthermia treatment simulation," Phys. Med. Biol., Vol. 38, 1283-1298, 1993.
doi:10.1088/0031-9155/38/9/008
25. Vaccari, A., R. Pontalti, C. Malacarne, and L. Cristoforetti, "A robust and e±cient subgridding algorithm for finite-difference time-domain simulations of Maxwell's equations," J. Comput. Phys., Vol. 194, 117-139, 2003.
doi:10.1016/j.jcp.2003.09.002