1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. on Antennas and Propagat., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
2. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.
3. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTF implementation of the CFS-PML for arbitrary media," Microwave and Optical Technology Letters, Vol. 27, No. 5, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A Google Scholar
4. Sullivan, D. M., "Frequency-dependent FDTD methods using Z transforms," IEEE Trans. on Antennas and Propagat., Vol. 40, 1223-1230, 1992.
doi:10.1109/8.182455 Google Scholar
5. Gandhi, O. P., B.-H. Gao, and J.-Y. Chen, "A frequency-dependent finite-difference time-domain formulation for general dispersive media," IEEE Trans. on Microwave Theory and Tech., Vol. 41, 658-665, 1993.
doi:10.1109/22.231661 Google Scholar
6. Young, J. L., "Propagation in linear dispersive media: Finite difference time-domain methodologies," IEEE Trans. on Antennas and Propagat., Vol. 43, 422-426, 1995.
doi:10.1109/8.376042 Google Scholar
7. Pereda, J. A., L. A. Vielva, A. Vegas, and A. Prieto, "Statespace approach to the FDTD formulation for dispersive media," IEEE Trans. on Magn., Vol. 31, 1602-1605, 1995.
doi:10.1109/20.376339 Google Scholar
8. Kelly, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. on Antennas and Propagat., Vol. 44, 792-797, 1996.
doi:10.1109/8.509882 Google Scholar
9. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave Guided Wave Lett., Vol. 7, 121-123, 1997.
doi:10.1109/75.569723 Google Scholar
10. Chen, Q., M. Katsuari, and P. H. Aoyagi, "An FDTD formulation for dispersive media using a current density," IEEE Trans. on Antennas and Propagat., Vol. 46, 1739-1746, 1998.
doi:10.1109/8.736632 Google Scholar
11. Pereda, J. A., A. Vegas, and A. Prieto, "FDTD modeling of wave propagation in dispersive media by using the Mobius transformation technique," IEEE Trans. on Microwave Theory and Tech., Vol. 50, 1689-1695, 2002.
doi:10.1109/TMTT.2002.800388 Google Scholar
12. Okoniewski, M. and E. Okoniewska, "Drude dispersion in ADE FDTD revisited," Electronics Letters, Vol. 42, No. 9, 503-504, 2006.
doi:10.1049/el:20060328 Google Scholar
13. Kong, S., J. J. Simpson, and V. Backman, "ADE-FDTD scattered-field formulation for dispersive materials," IEEE Microwave and Wireless Components Lett., Vol. 18, No. 1, 4-6, Jan. 1, 2008.
doi:10.1109/LMWC.2007.911970 Google Scholar
14. Shibayama, J., et al. "Simple trapezoidal recursive convolution technique for the frequency-dependent FDTD analysis of a drude-lorentz model," IEEE Photonics Technology Letters, Vol. 21, No. 2, 100-102, Jan. 15, 2009.
doi:10.1109/LPT.2008.2009003 Google Scholar
15. Alsunaidi, M. A. and A. A. Al-Jabr, "A general ADE-FDTD algorithm for the simulation of dispersive structures," IEEE Photonics Technology Letters, Vol. 21, No. 12, 817-819, Jun. 15, 2009.
doi:10.1109/LPT.2009.2018638 Google Scholar
16. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603 Google Scholar
17. Luebbers, R. J., F. Hunsberger, and K.S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. on Antennas and Propagat., Vol. 39, No. 1, 29-34, 1991.
doi:10.1109/8.64431 Google Scholar
18. Kolwas, K., A. Derkachova, and M. Shopa, "Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 110, 1490-1501, 2009.
doi:10.1016/j.jqsrt.2009.03.020 Google Scholar
19. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "mplementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics application," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011. Google Scholar
20. Paris, A., A. Vaccari, A. Cala' Lesina, E. Serra, and L. Calliari, "Plasmonic scattering by metal nanoparticles for solar cells," Plasmonics, 1-10, March 8, 2012. Google Scholar
21. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.
22. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, 1998.
doi:10.1002/9783527618156.ch1
23. Laakso, I., S. Ilvonen, and T. Uusitupa, "Performance of convolutional PML absorbing boundary conditions in finite-difference time-domain SAR calculations," Phys. Med. Biol. , Vol. 52, 7183-7192, 2007.
doi:10.1088/0031-9155/52/23/027 Google Scholar
24. Pontalti, R., L. Cristoforetti, and L. Cescatti, "The frequency dependent FD-TD method for multi-frequency results in microwave hyperthermia treatment simulation," Phys. Med. Biol., Vol. 38, 1283-1298, 1993.
doi:10.1088/0031-9155/38/9/008 Google Scholar
25. Vaccari, A., R. Pontalti, C. Malacarne, and L. Cristoforetti, "A robust and e±cient subgridding algorithm for finite-difference time-domain simulations of Maxwell's equations," J. Comput. Phys., Vol. 194, 117-139, 2003.
doi:10.1016/j.jcp.2003.09.002 Google Scholar