Vol. 26
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-09-24
Influence of the Plasma Column Cross-Section Non-Circularity on the Excitation of the Azimuthal Surface Waves in Electron Cyclotron Frequency Range by Annular Electron Beam
By
Progress In Electromagnetics Research M, Vol. 26, 39-53, 2012
Abstract
The initial stage of interaction between an annular beam of electrons, which rotate along Larmor orbits in the gap between a localized plasma column and a metal waveguide with a circular cross-section of its walls, and the electromagnetic waves of the surface type, is studied theoretically. These waves are extraordinary polarized; they propagate along the azimuthal angle across an axial external steady magnetic field in the electron cyclotron frequency range. The numerical analysis shows that changing the shape of the plasma filling cross section leads to corrections to the eigen frequency of the surface waves but does not cause a disruption of the resonance beam-wave instability development. Moreover, the conditions are found when appropriate choice of the shape can lead to increasing the instability growth rate by dozens of percent.
Citation
Igor O. Girka, Volodymyr Girka, and Ivan Viktorovych Pavlenko, "Influence of the Plasma Column Cross-Section Non-Circularity on the Excitation of the Azimuthal Surface Waves in Electron Cyclotron Frequency Range by Annular Electron Beam," Progress In Electromagnetics Research M, Vol. 26, 39-53, 2012.
doi:10.2528/PIERM12080308
References

1. Kainer, S., J. D. Gaffey, C. P. Price, et al. "Nonlinear wave interactions and evolution of a ring-beam distribution of energetic electrons," Phys. Fluids, Vol. 31, No. 8, 2238-2248, 1988.
doi:10.1063/1.867003

2. Saito, H. and J. S. Wurtele, "The linear theory of the circular free-electron laser," Phys. Fluids, Vol. 30, No. 7, 2209-2220, 1987.
doi:10.1063/1.866155

3. Wu, J., C. Xiong, and S. Liu, "Excitation of microwave by an annular electron beam in a plasma-filled dielectric lined waveguide," International Journal of Infrared and Millimeter Waves, Vol. 16, No. 9, 1573-1581, 1995.
doi:10.1007/BF02274817

4. Norreys, P. A., J. S. Green, J. R. Davies, et al. "Observation of annular electron beam transport in multi-TeraWatt laser-solid interactions," Plasma Physics and Controlled Fusion, Vol. 48, No. 2, L11-L22, 2006.
doi:10.1088/0741-3335/48/2/L01

5. Humphries, S., Charged Particle Beams, John Wiley and Sons Inc., 1990.

6. Yatsui, K., "Industrial applications of pulse power and particle beams," Laser and Particle Beams, Vol. 7, No. 4, 733-741, 1989.
doi:10.1017/S0263034600006200

7. Miller, R. B., An Introduction to the Physics of Intense Charged Particle Beams, Plenum Press, New York, 1982.
doi:10.1007/978-1-4684-1128-7

8. Manheimer, W. M., R. F. Fernsler, and M. S. Gitlin, "High power, fast, microwave components based on beam generated plasmas," IEEE Transactions on Plasma Science, Vol. 26, No. 5, 1543-1555, 1998.
doi:10.1109/27.736059

9. Murphy, D. P., R. F. Fernsler, R. E. Pechacek, and R. A. Meger, "Microwave emission from plasmas produced by magnetically confined electron beams," IEEE Transactions on Plasma Science, Vol. 30, No. 1, 436-441, 2002.
doi:10.1109/TPS.2002.1003893

10. Borg, G. G., J. H. Harris, D. G. Miljak, and N. M. Martin, "Application of plasma columns to radio-frequency antennas ," Applied Physics Letters, Vol. 74, No. 22, 3272-3274, 1999.
doi:10.1063/1.123317

11. Cerri, G., R. De Leo, V. Mariani Primiani, and P. Russo, "Measurement of the properties of a plasma column used as a radiated element," IEEE Transactions on Instrumentation and Measurement, Vol. 57, 242-247, 2008.
doi:10.1109/TIM.2007.909503

12. Rayner, J. P., A. P. Whichello, and A. D. Cheetham, "Physical characteristics of plasma antennas," IEEE Transactions on Plasma Science, Vol. 32, No. 1, 269-281, 2004.
doi:10.1109/TPS.2004.826019

13. Wu, M., B. Y.Wen, H. Zhou, and , "Ionospheric clutter suppression in HF surface wave radar," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1265-1272, 2009.
doi:10.1163/156939309789108570

14. Girka, V. O., I. O. Girka, A. V. Girka, and I. V. Pavlenko, "Theory of azimuthal surface waves propagating in non-uniform waveguides," Journal of Plasma Physics, Vol. 77, Part 4, 493-519, 2011.

15. Girka, V. O., I. O. Girka, Y. I. Morgal, and I. V. Pavlenko, "Excitation of azimuthal surface modes by annular electron beams in the range of electron cyclotron frequency," Physica Scripta, Vol. 84, 025505, 2011.
doi:10.1088/0031-8949/84/02/025505

16. Wu, J.-J., T.-J. Yang, and L. Shen, "Subwavelength microwave guiding by a periodical corrugated metal wire," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 11-19, 2009.
doi:10.1163/156939309787604616

17. Zhang, X., L. Shen, J.-J. Wu, and T.-J. Yang, "Terahertz surface plasmon polaritons on a periodically structured metal film with high confinement and low loss," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2451-2460, 2009.

18. Girka, O. I., V. O. Girka, I. O. Girka, and I. V. Pavlenko, "Effect of the shape of the cross section of a plasma-dielectric interface on the dispersion properties of azimuthal surface modes," Plasma Physics Reports, Vol. 23, No. 2, 91-101, 2007.
doi:10.1134/S1063780X0702002X

19. Girka, O. I., V. O. Girka, I. O. Girka, and I. V. Pavlenko, "Resonant e®ect of the noncircular shape of the plasma surface on the dispersion properties of extraordinary azimuthal surface modes in magnetoactive waveguides," Plasma Physics Reports, Vol. 23, No. 7, 543-552, 2007.
doi:10.1134/S1063780X07070033

20. Aliev, Y. M., H. Schluter, and A. Shivarova, Guided-wave Produced Plasmas, Springer, 2000.
doi:10.1007/978-3-642-57060-5

21. Cojocaru, E., "Waveguides filled with bilayers of double-negative (DNG) and double-positive (DPS) metamaterials," Progress In Electromagnetics Research B, Vol. 32, 75-90, 2011.
doi:10.2528/PIERB11050604

22. Dmitriev, V. A. and A. O. Silva, "Nonreciprocal properties of surface plasmon-polaritons at the interface between two magnetized media: Exact analytical solutions," Progress In Electromagnetics Research Letters, Vol. 21, 177-186, 2011.

23. Lazarus, E. A., F. L. Waelbroeck, T. C. Luce, et al. "A comparison of sawtooth oscillations in bean and oval shaped plasmas," Plasma Physics and Controlled Fusion, Vol. 48, No. 2, L65-L72, 2006.
doi:10.1088/0741-3335/48/8/L01

24. Karpov, S. Y. and S. N. Stolyarov, "Propagation and transformation of electromagnetic waves in one-dimensional periodic structures," Physics Uspekhi, Vol. 36, No. 1, 1-22, 1993.
doi:10.1070/PU1993v036n01ABEH002061

25. Kumar, V., M. Mishra, and N. K. Joshi, "Study of a fluorescent tube as plasma antenna," Progress In Electromagnetics Research Letters, Vol. 24, 17-26, 2011.