Vol. 27
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-11-20
A Method Based on Particle Swarm Optimization to Retrieve the Shape of Red Blood Cells: a Preliminary Assessment
By
Progress In Electromagnetics Research M, Vol. 27, 109-117, 2012
Abstract
The particle swarm optimization (PSO) algorithm, a global optimization technique based on cooperative swarming strategy, has been used to solve inverse scattering problem for red flood cells (RBCs) and detect possible anomalies. The inverse scattering problem is recast as an iterative optimization one by definiing a suitable cost function.With this method is possible to estimate the morphological parameters of a red blood cell and to distinguish healthy RBCs from diseased ones. This work lays the basis for a new approach to make diagnosis. Preliminary numerical experiments show the potential effectiveness and the reliability of the proposed method as diagnostic tools.
Citation
Federico Caramanica , "A Method Based on Particle Swarm Optimization to Retrieve the Shape of Red Blood Cells: a Preliminary Assessment," Progress In Electromagnetics Research M, Vol. 27, 109-117, 2012.
doi:10.2528/PIERM12090201
http://www.jpier.org/PIERM/pier.php?paper=12090201
References

1. Ergul, O., A. Arslan-Ergul, and L. Gurel, "Computational study of scattering from healthy and diseased red blood cells," J. Biomed. Opt., Vol. 15, 045004, Aug. 2010.
doi:10.1117/1.3467493

2. Ergul, O., A. Arslan-Ergul, and L. Gurel, "Rigorous solutions of scattering problems involving red blood cells," EuCAP, 1-4, 2010.

3. Gilev, K. V., E. Eremina, M. A. Yurkin, and V. P. Maltsev, "Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells," Opt. Express, Vol. 18, 5681-5690, 2010.
doi:10.1364/OE.18.005681

4. Karlsson, A., J. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. on Biomed. Eng., Vol. 52, 13-18, Jan. 2005.
doi:10.1109/TBME.2004.839634

5. Caorsi, S., A. Massa, M. Pastorino, and M. Donelli, "Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures," IEEE Trans. on Ant. and Propag., Vol. 52, 1386-1397, 2004.
doi:10.1109/TAP.2004.830254

6. Oliveri, G., F. Caramanica, and A. Massa, "Hybrid ADS-based techniques for radio astronomy array design," IEEE Trans. on Ant. and Propag。, Vol. 59, 1817-1827, Jun. 2011.
doi:10.1109/TAP.2011.2122228

7. Yurkin, M. A., "Discrete dipole simulations of light scattering by blood cells,", Ph.D. thesis, University of Amsterdam, 2007.

8. Yurkin, M. A., V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transfer, Vol. 106, 546-557, 2007.
doi:10.1016/j.jqsrt.2007.01.033

9., "ADDA | light scattering simulator using the discrete dipole approximation,", http://code.google.com/p/a-dda/, 2009.
doi:10.1016/j.jqsrt.2007.01.033

10. Kuchel, P. W. and E. D. Fackerell, "Parametric-equation representation of biconcave erythrocytes," Bulletin of Mathematical Biology, Vol. 61, 209-220, 1999.
doi:10.1006/bulm.1998.0064

11. Wolpert, D. H. and W. G. Macready, "No free lunch theorems for optimization," IEEE Trans. on Evolutionary Computation, Vol. 1, 67-82, 1997.
doi:10.1109/4235.585893

12. Yurkin, M. A., K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, "Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation," Appl. Opt., Vol. 44, 5249-5256, 2005.
doi:10.1364/AO.44.005249

13. Martini, A., M. Donelli, M. Franceschetti, and A. Massa, "Particle density retrieval in random media using a percolation model and a particle swarm optimizer," IEEE Ant. and Wireless Propag. Letters, Vol. 7, 213-216, 2008.
doi:10.1109/LAWP.2008.921140

14. Azaro, R., G. Boato, E. Zeni, M. Donelli, and A. Massa, "Design of Prefractal monopolar antenna for 3.4-3.6 GHz Wi-Max band portable devices," IEEE Ant. and Wireless Propag. Letters, Vol. 5, 116-119, 2006.
doi:10.1109/LAWP.2006.872427

15. Azaro, R., F. DeNatale, E. Zeni, and M. Donelli, "Optimized design of a multifunction multiband antenna for automotive rescue system," IEEE Trans. on Ant. and Propag.,, Vol. 54, 392-400, 2004.
doi:10.1109/TAP.2005.863387

16. Donelli, M., R. Azaro, L. Fimognari, and A. Massa, "A planar electronically reconfigurable Wi-Fi band antenna based on a parasitic microstrip structure," IEEE Ant. and Wireless Propag. Letters, Vol. 6, 623-626, 2007.
doi:10.1109/LAWP.2007.913274

17. Donelli, M., S. Caorsi, F. De Natale, D. Franceschini, and A. Massa, "A versatile enhanced genetic algorithm for planar array design," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1533-1548, 2004.
doi:10.1163/1569393042954893