Vol. 29
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-03-13
Two Simple Analytical Models, Direct and Inverse, for Switched Reluctance Motors
By
Progress In Electromagnetics Research M, Vol. 29, 279-291, 2013
Abstract
This paper presents two simple analytical models of the switched reluctance motor. The first model is constructed on two flux linkage-current characteristics, the aligned position one calculated via finite element analysis (FEA), and the unaligned position characteristic calculated by using motor geometry data. The second model is based on three flux linkage-current characteristics, the aligned, unaligned and average one, obtained by employing the FEA. In both cases the direct and inverse models are defined. The models consider the core nonlinearity and the influence of the rotor position on the motor behavior. The estimated magnetizing and torque characteristics are compared with that calculated via two dimensions FEA for a switched reluctance motor (SRM) sample and with the test bench obtained ones. The merits and the drawbacks of the models are evinced.
Citation
Liviu-Emilian Somesan, Emil Padurariu, and Ioan-Adrian Viorel, "Two Simple Analytical Models, Direct and Inverse, for Switched Reluctance Motors," Progress In Electromagnetics Research M, Vol. 29, 279-291, 2013.
doi:10.2528/PIERM12103001
References

1. Krishnan, R., "Switched Reluctance Motors Drives," CRC Press, 2001.

2. Henneberger, G. and I. A. Viorel, Variable Reluctance Electrical Machines, Shaker Verlag, Aachen, Germany, 2001.

3. Stankovic, A. M., G. Tadmor, Z. J. Coric, and I. Agirman, "On torque ripple reduction in current-fed switched reluctance motors," IEEE Trans. on Ind. Electronics, Vol. 46, No. 1, 177-183, Feb. 1999.
doi:10.1109/41.744409

4. Radun, A. V., "Analytically computing the flux linked by a switched reluctance motor phase when the stator and rotor poles overlap," IEEE Trans. on Magnetics, Vol. 36, No. 2, 1996-2003, 2000.
doi:10.1109/20.875277

5. Radun, A. V., "Analytical calculation of the switched reluctance motor's unaligned inductance," IEEE Trans. on Magnetics,, Vol. 35, No. 6, 4473-4481, 1999.
doi:10.1109/20.809140

6. Hossain, S. A. and I. Husain, "A geometry based simplified analytical model of switched reluctance machines for real-time controller implementation," IEEE Trans. on Power Electronics, Vol. 18, No. 6, 1384-1389, 2003.
doi:10.1109/TPEL.2003.818870

7. Khalil, A. and I. Husain, "A fourier series generalized geometry based analytical model of switched reluctance machines," IEEE Trans. Ind. Appl., Vol. 43, No. 3, 673-684, Apr./May 2007.
doi:10.1109/TIA.2007.895737

8. Kokernak, J. M. and D. A. Torrey, "Magnetic circuit model for mutually coupled switched reluctance machine," IEEE Trans. on Magnetics, Vol. 36, No. 2, 500-507, 2000.
doi:10.1109/20.825824

9. Preston, M. A. and J. P. Lyons, "A switched reluctance motor model with mutual coupling and multi-phase excitation," IEEE Trans. on Magnetics, Vol. 27, No. 6, 5423-5425, 2001.
doi:10.1109/20.278859

10. Soares, F. and P. J. Costa, "Simulation of a 6/4 switched reluctance motor based on Matlab/Simulink environment," IEEE Trans. Aero. Electron., Vol. 37, No. 3, 589-609, May 2001.

11. Belfore, L. A. and A. A. Arkadan, "Modeling faulted switched reluctance motors using evolutionary neural networks," IEEE Trans. on Ind. Electronics, Vol. 44, No. 2, 226-233, Mar. 1997.
doi:10.1109/41.564161

12. Lin, Z. Y., D. S. Reay, and B. W. Williams, "Online modeling for switched reluctance motors using B-Spline neural networks," IEEE Trans. on Ind. Electronics, Vol. 54, No. 6, 3317-3321, Nov. 2007.
doi:10.1109/TIE.2007.904009

13. Ding, W. and D. L. Liang, "Modeling of a 6/4 switched reluctance motor using adaptive neural fuzzy inference system," IEEE Trans. on Magnetics, Vol. 44, No. 7, 1796-1804, Jul. 2008.
doi:10.1109/TMAG.2008.919711

14. Lachman, T., T. R. Mohamad, and C. H. Fong, "Nonlinear modeling of switched reluctance motors using artificial intelligence technique," IEE Procs. --- Elec. Power. Appl., Vol. 151, No. 1, 53-60, Jan. 2004.
doi:10.1049/ip-epa:20040025

15. Edrington, C. S., B. Fahimi, and M. Krishnamurthy, "An auto-calibrating inductance model for switched reluctance motor drive," IEEE Trans. on Ind. Electronics, Vol. 54, No. 4, 2165-2173, Jul. 2007.
doi:10.1109/TIE.2007.895118

16. Vujicic, V. P., "Modeling of a switched reluctance machine based on the invertible torque function," IEEE Trans. on Magnetics, Vol. 44, No. 9, 2186-2194, Sep. 2008.
doi:10.1109/TMAG.2008.2000663

17. Parreira, B., S. Rafael, A. J. Pires, and P. J. Costa Branco, "Obtaining the magnetic characteristics of an 8/6 switched reluctance machine: From FEM analysis to the experimental tests," IEEE Trans. on Ind. Electronics, Vol. 52, No. 6, 1635-1643, Dec. 2005.
doi:10.1109/TIE.2005.858709

18. Zhou, H. J., W. Ding, and Z. M. Yu, "A nonlinear model for the switched reluctance motor," Proceedings of ICEMS 2005, Nanjing, China, Oct. 27-29, 2005.

19. Roux, C. and M. M. Morcos, "A simple model for switched reluctance motors," IEEE Trans. on Energy Conversion, Vol. 36, No. 3, 400-405, 2005.

20. Andrade, D. A. and R. Krishnan, "Characterization of switched reluctance machine using Fourier series approach," Proc. of 36th IEEE Ind. Appl. Annual Meeting, Vol. 1, 48-54, Sep. 2001.

21. Hue, X. D., K. W. E. Cheng, and S. L. Ho, "Trigonometry-based numerical method to compute nonlinear magnetic characteristics in switched reluctance motors," IEEE Trans. on Magnetics, Vol. 43, No. 4, 1845-1848, Apr. 2007.
doi:10.1109/TMAG.2007.892619

22. Chi, H.-P., R.-L. Lin, and J.-F. Chen, "Simplified flux-linkage model for switched-reluctance motors," IEE Procs. --- Elec. Power. Appl., Vol. 152, No. 3, 577-583, 2005.
doi:10.1049/ip-epa:20045207

23. Xia, C. L., M. Xue, and T. N. Shi, "A new rapid nonlinear simulation method for switched reluctance motors," IEEE Trans. on Energy Conversion, Vol. 24, No. 3, 578-586, 2009.
doi:10.1109/TEC.2009.2016131

24. Viorel, I. A., L. Strete, and I. F. Soran, "Analytical flux linkage model of switched reluctance motor," Revue Roum. de Science et Technique, Electrotech. et Energetique, Vol. 54, No. 2, 139-146, 2009.

25. Somesan, L., E. Padurariu, I.-A. Viorel, C. Martis, and O. Cornea, "Simple analytical models of the switched reluctance motors, case study," Proceedings of ICEM 2010, 1-6, Rome, Italy, 2010.

26. Cornea, O., "Control strategies for a SRM drive,", Ph.D. Thesis, Politehnica University of Timisoara, 2007 (in Romanian).

27. Chapra, S. C. and R. P. Canale, Numerical Methods for Engineers, 3rd Ed., McGraw-Hill Company, 1998.

28. Chang, J. H., D. H. Kang, I.-A. Viorel, and L. Strete, "Transverse flux reluctance linear motor (TFRLM) analytical model based on finite element method (FEM)," IEEE Trans. on Magnetics, Vol. 43, No. 4, 1201-1204, 2007.
doi:10.1109/TMAG.2006.890957