Vol. 37
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-02-16
Absolute Adaptive CS Model and Modified Strong Tracking Unscented Filter for High Maneuvering Target Tracking
By
Progress In Electromagnetics Research C, Vol. 37, 183-197, 2013
Abstract
Absolute adaptive current statistical (AACS) model and modified strong tracking unscented filter (MSTUF) are proposed for maneuvering target tracking (MTT) under nonlinear measurement in this paper. The key point of the AACS model is to associate the instantaneous acceleration variance with some elements of state covariance matrix by constructing acceleration increment models of the acceleration limit and acceleration mean in the CS model, while the maneuvering frequency can adjust itself according to the change of the measurement residual. MSTUF is proposed for high maneuver tracking under nonlinear measurement by incorporating the modified strong tracking filter (STF) into the unscented filter (UF). Since the state covariance, process noise covariance and maneuvering frequency can adjust themselves jointly according to the residual, the proposed algorithm, called the AACS-MSTUF, has a good performance on both maneuver and non-maneuver. Simulation results indicate that the overall performance of the proposed algorithm is better than the interacting multiple-model unscented filter (IMM-UF), UF and original strong tracking unscented filter (STUF) based on the CS model (CS-STUF) when considering tracking accuracy, stability, convergence and computational complexity.
Citation
Zheng Zhou Jin-Mang Liu Chang-Yun Liu , "Absolute Adaptive CS Model and Modified Strong Tracking Unscented Filter for High Maneuvering Target Tracking," Progress In Electromagnetics Research C, Vol. 37, 183-197, 2013.
doi:10.2528/PIERC12122003
http://www.jpier.org/PIERC/pier.php?paper=12122003
References

1. Singh, A. K., P. Kumar, T. Chakravarty, G. Singh, and S. Bhooshan, "A novel digital beam former with low angle resolution for vehicle tracking radar," Progress In Electromagnetics Research, Vol. 66, 229-237, 2006.
doi:10.2528/PIER06112102

2. Duh, F. B. and C. T. Lin, "Tracking a maneuvering target using neural fuzzy network," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 34, No. 1, 16-33, 2004.
doi:10.1109/TSMCB.2003.810953

3. Wang, X. F., J. F. Chen, Z. G. Shi, and K. S. Chen, "Fuzzy-control-based particle filter for maneuvering target tracking," Progress In Electromagnetics Research, Vol. 118, 1-15, 2011.

4. Wang, Q. C., J. Li, M. X. Zhang, and C. H. Yang, "H-infinity filter based particle filter for maneuvering target tracking," Progress In Electromagnetics Research B, Vol. 30, 103-116, 2011.

5. Fan, , J. P., Y. L. Zhu, S. J. Fan, H. Q. Fan, and Q. Fu, "Feature aided switching model set approach for maneuvering target tracking," Progress In Electromagnetics Research B, Vol. 45, 251-268, 2012.

6. Li, , X. R. and V. P. Jilkov, "Survey of maneuvering target tracking-Part I: Dynamic models," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 4, 1333-1364, 2003.
doi:10.1109/TAES.2003.1261132

7. Lee, H. and M. J. Tahk, "Generalized input-estimation technique for tracking maneuvering targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 4, 1388-1402, 1999.
doi:10.1109/7.805455

8. Kirubarajan, T., Y. Bar-Shalom, K. Pattipati, and I. Kadar, "Ground target tracking with variable structure IMM estimator," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 1, 26-46, 2000.
doi:10.1109/7.826310

9. Li, X. R., V. P. Jilkov, and J. Ru, "Multiple-model estimation with variable structure. Part VI: Expected mode augmentation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, No. 3, 853-867, 2005.
doi:10.1109/TAES.2005.1541435

10. Zhou, H. R. and K. S. P. Kumar, "A 'current' statistical model and adaptive algorithm for estimating maneuvering targets," AIAA Journal of Guidance, Vol. 7, No. 5, 596-602, 1984.
doi:10.2514/3.19900

11. Chen, H. D. and K. C. Chang, "Novel nonlinear filtering and prediction method for maneuvering target tracking," IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, No. 1, 237-243, 2009.
doi:10.1109/TAES.2009.4805276

12. Khaloozadeh, H. and A. Karsaz, "Modified input estimation technique for tracking maneuvering targets," IET Radar, Sonar and Navigation, Vol. 3, No. 1, 30-41, 2009.
doi:10.1049/iet-rsn:20080028

13. Bahari, M. H. , S. M. B. Naghibi, and N. Pariz, "Intelligent fading memory for high maneuvering target tracking," International Journal of Physical Sciences, Vol. 4, No. 10, 548-554, 2009.

14. Bahari, M. H. and N. Pariz, "High maneuvering target tracking using an input estimation technique associated with fuzzy forgetting factor," Scientific Research and Essay, Vol. 4, No. 10, 936-945, 2009.

15. Yang, J. L. and H. B. Ji, "High maneuvering target-tracking based on strong tracking modified input estimation," Scientific Research and Essays, Vol. 5, No. 13, 1683-1689, 2010.

16. Boers, Y. and J. N. Driessen, "Interacting multiple model particle filter," Radar, Sonar and Navigation, IEE Proceedings, Vol. 150, No. 5, 344-349, 2003.
doi:10.1049/ip-rsn:20030741

17. Li, X. R. and Y. Bar-Shalom, "Multiple-model estimation with variable structure," IEEE Transactions on Automatic Control, Vol. 41, No. 4, 478-493, 1996.
doi:10.1109/9.489270

18. Lee, , B. J., , J. B. Park, Y. H. Joo, and S. H. Jin, "Intelligent Kalman filter for tracking a maneuvering target," Radar, Sonar and Navigation, IEE Proceedings,, Vol. 151, No. 6, 344-350, 2004.
doi:10.1049/ip-rsn:20040894

19. Fan, X. J., F. Liu, and Y. Qin, "Current statistic model and adaptive tracking algorithm based on strong tracking filter," Acta Electronica Sinica, Vol. 34, No. 6, 981-984, 2006.

20. Li, X. R. and V. P. Jilkov, "A survey of maneuvering target tracking: Approximation techniques for nonlinear filtering," Proceeding of 2004 SPIE Conference on Signal and Data Processing of Small Targets, 537-550, San Diego, USA, Apr. 2004.

21. Zhou, D. H. and P. M. Frank, "Strong tracking filtering of nonlinear time-varying stochastic systems with colored noise: Application to parameter estimation and empirical robustness analysis," International Journal of Control, Vol. 65, No. 2, 295-307, , 1996.
doi:10.1080/00207179608921698

22. Cui, N. G., P. X. Han, and R. J. Mu, "The fault-detection method of a navigation system based on a strong tracking unscented kalman filter," Journal of Harbin Engineering University, Vol. 32, No. 10, 1295-1299, 2011.

23. Julier, S. J. and J. K. Uhlmann, "Unscented filtering and nonlinear estimation," Proceedings of the IEEE, Vol. 92, No. 3, 401-422, Mar. 2004.
doi:10.1109/JPROC.2003.823141