1. Balanis, C. A., Antenna Theory and Design, 2nd Ed., John Willey & Sons, Inc., 1997.
2. Anguera, J., C. Puente, C. Borja, R. Montero, and J. Soler, "Small and high directivity bowtie patch antenna based on the sierpinski fractal," Microwave and Optical Technology Letters, Vol. 31, No. 3, 239-241, November 2001.
doi:10.1002/mop.1407 Google Scholar
3. Romeu, J., C. Borja, and S. Blanch, "High directivity modes in the koch island fractal patch antenna," IEEE Antennas and Propagation Symposium, 1696-1699, 2000. Google Scholar
4. Anguera, J., J. P. Daniel, C. Borja, J. Mumbru, C. Puente, T. Leduc, N. Laeveren, and P. V. Roy, "Metallized foams for fractal-shaped microstrip patch antennas," IEEE Antennas and Propagation Magazine, Vol. 50, No. 6, 20-38, 2008.
doi:10.1109/MAP.2008.4772718 Google Scholar
5. Borja, C., G. Font, S. Blanch, and J. Romeu, "High directivity fractal boundary microstrip patch antenna," IEE Electronic Letters, Vol. 36, No. 9, 778-779, 2000.
doi:10.1049/el:20000625 Google Scholar
6. Anguera, J., L. Boada, C. Puente, C. Borja, and J. Soler, "Stacked H-shaped microstrip patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 4, 983-993, 2004.
doi:10.1109/TAP.2004.825812 Google Scholar
7. Moldovan, E., B. Lindmark, and P. Slattman, "Optimization of a stacked patch antenna for high directivity," 13emes Journees nternationales de Nice sur les Antennes (JINA, 317-372, 2004, www.ee.kth.se/php/modules/publications/reports/2004/IR-S3-SB-0460.pdf. Google Scholar
8. Foroozesh, A. and L. Shafai, "Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 258-270, 2010.
doi:10.1109/TAP.2009.2037702 Google Scholar
9. Foroozesh, A. and L. Shafai, "On the characteristics of the highly directive resonant cavity antenna having metal strip grating superstrate," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 78-91, 2012.
doi:10.1109/TAP.2011.2167933 Google Scholar
10. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directivity EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201 Google Scholar
11. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Z. Duan, H. Ma, and Z. Xu, "A novel high-directivity microstrip patch antenna based on zero-index metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 538-541, 2009.
doi:10.1109/LAWP.2009.2018710 Google Scholar
12. Cheype, C., C. Serier, M. Thevenot, T. Monediµere, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1285-1290, 2002.
doi:10.1109/TAP.2002.800699 Google Scholar
13. El-Khouly, E., H. Ghali, and S. A. Khamis, "High directivity antenna using a modified Peano space-filling curve," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 405-407, 2007.
doi:10.1109/LAWP.2007.903492 Google Scholar
14. Yang, H. D., N. G. Alexopoulos, and E. Yablonovitch, "Photonic band-gap materials for high-gain printed circuit antennas," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 1, 185-187, 1997.
doi:10.1109/8.554261 Google Scholar
15. Haupt, R. L., "An introduction to genetic algorithms for electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 37, No. 2, 7-15, 1995.
doi:10.1109/74.382334 Google Scholar
16. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 7-21, 1997.
doi:10.1109/74.632992 Google Scholar
17. Thors, B., H. Steyskal, and H. Holter, "Broadband fragmented aperture phased array element design using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 53, 3280-3287, 2005.
doi:10.1109/TAP.2005.856340 Google Scholar
18. Jayasinghe, J. M. J. W. and D. N. Uduwawala, "A broadband triple-frequency patch antenna for WLAN applications using genetic algorithm optimization," 7th IEEE International Conference on Industrial and Information Systems, 1-4, 2012. Google Scholar
19. Ozgun, O., et al. "Design of dual-frequency probe-fed microstrip antennas with genetic optimization algorithm," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 1947-1954, 2003.
doi:10.1109/TAP.2003.814732 Google Scholar
20. Choo, H., A. Hutani, L. C. Trintinalia, and H. Ling, "Shape optimisation of broadband microstrip antennas using genetic algorithm," Electronics Letters, Vol. 36, No. 25, 2057-2058, 2000.
doi:10.1049/el:20001452 Google Scholar
21. Sun, S., L. V. Yinghua, and J. Zhang, "The application of genetic algorithm optimization in broadband microstrip antenna design," Antennas and Propagation Society International Symposium (APSURSI), 1-4, 2010. Google Scholar
22. Spence, T. G., D. H. Werner, and R. D. Groff, "Genetic algorithm optimization of some novel broadband and multiband microstrip antennas," Antennas and Propagation Society International Symposium, Vol. 4, 4408-4411, 2004. Google Scholar
23. Griffiths, L. A., C. Furse, and Y. C. Chung, "Broadband and multiband antenna design using the genetic algorithm to create amorphous shapes using ellipses," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 10, 2776-2782, October 2006.
doi:10.1109/TAP.2006.882154 Google Scholar
24. Villegas, F. J., T. Cwik, Y. Rahmat-Samii, and M. Manteghi, "A parallel electromagnetic genetic-algorithm optimization application for patch antenna design," IEEE Transactions on Antennas and Propagation, Vol. 52, 2424-2435, 2004.
doi:10.1109/TAP.2004.834071 Google Scholar
25. Jayasinghe, J. W., J. Anguera, and D. N. Uduwawala, "A simple design of multi band microstrip patch antennas robust to fabrication tolerances for GSM, UMTS, LTE, and Bluetooth applications by using genetic algorithm optimization," Progress In Electromagnetics Research M, Vol. 27, 255-269, 2012. Google Scholar
26. Jayasinghe, J. M. J. W., D. N. Uduwawala, and J. Anguera, "Design of dual band patch antennas for cellular communications by genetic algorithm optimization," International Journal of Engineering and Technology, Vol. 1, No. 1, 26-43, 2012. Google Scholar
27. Johnson , J. M. and Y. Rahmat-Samii, "Genetic algorithms and method of moments (GA/MoM): A novel integration for antenna design," Antennas and Propagation Society International Symposium , Vol. 3, 1664-1667, 1997. Google Scholar
28. Sathi, V., S. Taherizadeh, A. Lotfi, and C. Ghobadi, "Optimisation of multi-frequency microstrip antenna using genetic algorithm coupled with method of moments," Microwaves, Antennas & Propagation, IET, Vol. 4, No. 4, 477-483, 2010.
doi:10.1049/iet-map.2009.0020 Google Scholar
29. Villegas, F. J., T. Cwik, Y. Rahmat-Samii, and M. Manteghi, "Parallel genetic-algorithm optimization of a dual-band patch antenna for wireless communications," Antennas and Propagation Society International Symposium, Vol. 1, 334-337, 2002. Google Scholar
30. Herscovici, N., M. F. Osorio, and C. Peixeiro, "Miniaturization of rectangular microstrip patches using genetic algorithms," IEEE Antennas and Wireless Propagation Letters, Vol. 1, 94-97, 2002.
doi:10.1109/LAWP.2002.805128 Google Scholar
31. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Miniaturized biocompatible microstrip antenna using genetic algorithms," EEE Transactions on Antennas and Propagation, Vol. 53, No. 6, 1939-1945, 2005.
doi:10.1109/TAP.2005.848461 Google Scholar