Vol. 39
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-04-08
A Miniaturized Triple-Band Branch-Line Coupler Based on Simplified Dual-Composite Right/Left-Handed Transmission Line
By
Progress In Electromagnetics Research C, Vol. 39, 1-10, 2013
Abstract
A miniaturized triple-band branch-line coupler based on the simplified dual-composite right/left-handed transmission line (S-D-CRLH-TL) is proposed in this paper. The electromagnetic characteristics of S-D-CRLH-TL are analyzed by the simulator and equivalent circuit model, and the results prove that there are three frequencies with phase of -90° in the passbands; this characteristic can be applied in designing triple-band quadrature microwave components. The proposed branch-line coupler is fabricated and measured, the measured and simulated results are in good agreement with each other, showing that the triple-band operating at 3.06 GHz, 4.00 GHz and 5.54 GHz, the useful bandwidths are 2.97 GHz-3.16 GHz, 3.82 GHz-4.12 GHz and 5.48 GHz-5.67 GHz. In addition, compared with the conventional branch-line coupler, the whole size of the proposed one is 17 mm × 14.4 mm (0.173λ × 0.147λ) (λ is the wavelength in low frequency), it realizes a 73% size reduction. Moreover, compared with the triple-band branch-line coupler based on the double-Lorentz transmission line metamaterial, the proposed branch-line coupler is more effective in the situation, which is sensitive to phase-changing, as the sign of phase difference in the two outputs at the three frequency points keeps the same.
Citation
Guo-Cheng Wu, Guangming Wang, Li-Zhong Hu, Ya-Wei Wang, and Cang Liu, "A Miniaturized Triple-Band Branch-Line Coupler Based on Simplified Dual-Composite Right/Left-Handed Transmission Line," Progress In Electromagnetics Research C, Vol. 39, 1-10, 2013.
doi:10.2528/PIERC13030811
References

1. Lin, F., Q.-X. Chu, and Z. Lin, "A novel tri-band branch-line coupler with three controllable operating frequencies," IEEE Microwave and Wireless Component Letters, Vol. 20, No. 12, 666-668, 2010.
doi:10.1109/LMWC.2010.2074191

2. Zhang, H. and K. J. Chen, "A stub tapped branch line coupler for dual-band operations," IEEE Microwave and Wireless Component Letters, Vol. 17, No. 2, 106-108, 2007.
doi:10.1109/LMWC.2006.890330

3. Cheng, K. K. M. and F. L. Wong, "A novel approach to the design and implementation of dual-band compact planar 90o branch-line coupler," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 11, 2458-2463, 2004.
doi:10.1109/TMTT.2004.837151

4. Bonache, J., G. Siso, M. Gil, A. Iniesta, J. Garciarincon, and F. Martin, "Application of composite right/left-handed (CRLH) transmission lines based on complementary split ring resonators (CSRRs) to the design of dual-band microwave components," IEEE Microwave and Wireless Component Letters, Vol. 18, No. 8, 524-526, 2008.
doi:10.1109/LMWC.2008.2001011

5. Nguyen, H. V., C. Caloz, and , "Dual-band CRLH branch-line coupler in MIM technology," Microwave and Optical Technology Letters, Vol. 48, No. 11, 2331-2333, 2006.
doi:10.1002/mop.21948

6. Lin, Y.-L., T.-Y. Huang, T.-M. Shen, C.-C. Chen, and R.-B. Wu, "Design of compact triple-band branch-line coupler with three arbitrary operating frequencies," Asia-Pacific Microwave Conference, 25-28, 2011.

7. Liou, C.-Y., M.-S. Wu, J.-C. Yeh, Y.-Z. Chueh, S.-G. Mao, and , "A novel triple-band microstrip branch-line coupler with arbitrary operating frequencies," IEEE Microwave and Wireless Component Letter, Vol. 19, 683-685, Nov. 2009.
doi:10.1109/LMWC.2009.2031998

8. Xu, H.-X., G.-M.Wang, X. Chen, and T.-P. Li, "Broadband balun using fully artificial fractal-shaped composite right/left-handed transmission line," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 1, 16-18, 2012.
doi:10.1109/LMWC.2011.2173929

9. Yu, A., F. Yang, and A. Z. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.
doi:10.2528/PIER07082902

10. Dong, Y. D., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators," IEEE Trans. on Antennas and Propag., Vol. 60, 772-785, 2012.
doi:10.1109/TAP.2011.2173120

11. Jin, P. and R. W. Ziolkowski, "Multi-frequency, linear and circular polarized, metamaterial-inspired, near field resonant parasitic antennas," IEEE Trans. on Antennas and Propag., Vol. 59, 1446-1459, 2011.
doi:10.1109/TAP.2011.2123053

12. Xu, H.-X., G.-M. Wang, and J.-Q. Gong, "Compact dual-band zeroth-order resonance antenna," Chinese Physics Letters, Vol. 29, 014101, 2012.
doi:10.1088/0256-307X/29/1/014101

13. Hsu, C.-L., C.-W. Chang, and J.-T. Kuo, "Design of dual-band microstrip rat race coupler with circuit miniaturization," IEEE MTT-S Int. Microw. Symp. Dig., 177-180, Honolulu, HI, 2007.

14. Xu, H.-X., G.-M. Wang, J.-G. Liang, and T.-P. Li, "A compact microstrip diplexer using composite right/left-handed transmission line with enhanced harmonic suppression," Microwave Journal, Vol. 54, No. 11, 112-120, 2011.

15. Cao, W.-Q., B.-N. Zhang, T.-B. Yu, A. J. Liu, S.-J. Zhao, D.-S. Guo, and Z.-D. Song, "Single-feed dual-band dual-mode and dual-polarized microstrip antenna based on metamaterial structure," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1909-1919, 2011.
doi:10.1163/156939311797453953

16. Rennings, A., T. Liebig, C. Caloz, and I. Wolff, "Double-Lorentz transmission line metamaterial and its application to tri-band devices," IEEE/MTT-S Microwave Symposium, 1427-1430.

17. Wu, G.-C., G.-M. Wang, T. Li, and C. Zhou, "Novel dual-composite right/left-handed transmission line and its application to bandstop filter," Progress In Electromagnetics Research Letters, Vol. 37, 29-35, 2013.

18. Chiou, Y.-C. and J.-Y. Kuo, "Planar multiband bandpass filter with multimode stepped-impedance resonators," Progress In Electromagnetic Research, Vol. 114, 129-144, 2011.

19. Li, B., X. Wu, and W. Wu, "A miniaturized branch-line coupler with wideband harmonics suppression," Progress In Electromagnetics Research Letters, Vol. 17, 181-189, 2010.
doi:10.2528/PIERL10082602

20. Xu, H.-X., G.-M. Wang, and J.-G. Liang, "Novel CRLH TL metamaterial and compact microstrip branch-line coupler application," Progress In Electromagnetics Research C, Vol. 20, 173-186, 2011.

21. Kuo, J.-T. and C.-H. Tsai, "Generalized synthesis of rat race ring coupler and its application to circuit miniaturization," Progress In Electromagnetics Research, Vol. 108, 51-64, 2010.
doi:10.2528/PIER10071705

22. Lu, K., G.-M. Wang, C.-X. Zhang, and Y.-W. Wang, "Design of miniaturized branch-line coupler based on novel spiral-based resonators," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2244-2253, 2011.
doi:10.1163/156939311798147024

23. Dai, G. and M. Xia, "Novel miniaturized bandpass filters using spiral-shaped resonators and window feed structures," Progress In Electromagnetics Research, Vol. 100, 235-243, 2010.
doi:10.2528/PIER09120401

24. Wang, Y. X., "Microstrip cross-coupled tri-section stepped impedance bandpass ¯lter with wide stop-band performance," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 289-296, 2009.
doi:10.1163/156939309787604391

25. Huang, C.-Y., M.-H. Weng, C.-S. Ye, and Y.-X. Xu, "High band isolation and wide stopband diplexer using dual-mode stepped impendence resonators," Progress In Electromagnetics Research, Vol. 100, 299-308, 2010.
doi:10.2528/PIER09112701