Vol. 40
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-05-31
Compact Bandpass Filter with Wide Stopband Using Rectangular Strips, Asymmetric Open-Stubs and L Slot Lines
By
Progress In Electromagnetics Research C, Vol. 40, 201-215, 2013
Abstract
A novel slot-line filter with stop-band up to 30 GHz is proposed in this paper, and the theoretical analysis is illustrated in detail. This filter is designed on a Rogers RT/duroid 5870 substrate. The rectangular micro-strips can generate transmission zero to give a great suppression for the spurious response around 5f0 while the L slot lines can create transmission zeros to suppress the spurious response around 7f0, 9f0 and 11f0. f0 is 2.43 GHz in this paper and represents the center frequency of the main passband. The compact size of this novel filter is 23.7 mm * 14.725 mm (0.152λ * 0.103λ (λ is the working wavelength of this filter)). Besides, the external quality factor of this filter can be as high as about 29.6. To demonstrate the transmission function, the compact filter has been fabricated and the measured results show the feasibility of this structure.
Citation
Fang Xu, Mi Xiao, Zongjie Wang, Jiayang Cui, Zhe Zhu, Mu Ju, and Jizong Duan, "Compact Bandpass Filter with Wide Stopband Using Rectangular Strips, Asymmetric Open-Stubs and L Slot Lines," Progress In Electromagnetics Research C, Vol. 40, 201-215, 2013.
doi:10.2528/PIERC13032305
References

1. Mo, , S.-G., Z.-Y. Yu, and L. Zhang, "Design of triple-mode bandpass Filter using improved hexagonal loop resonator," Progress In Electromagnetics Research, Vol. 96, 117-125, 2009.
doi:10.2528/PIER09080304

2. Coudos, S. K., Z. D. Zaharis, and T. V. Yioultsis, "Application of a differential evolution algorithm with strategy adaptation to the design of multi-band microwave filters for wireless communications," Progress In Electromagnetics Research, Vol. 109, 123-137, 2010.
doi:10.2528/PIER10081704

3. Wu, L.-S., J.-F. Mao, W. Shen, and W.-Y. Yin, "Extended doublet bandpass filters implemented with microstrip resonator and full-/half-mode substrate integrated cavities," Progress In Electromagnetics Research, Vol. 108, 433-447, 2010.
doi:10.2528/PIER10081206

4. Chiou, Y.-C., P.-S. Yang, J.-T. Kuo, and C.-Y.Wu, "Transmission zero design graph for dual-mode dual-band filter with periodic stepped-impedance ring resonator," Progress In Electromagnetics Research, Vol. 108, 23-36, 2010.
doi:10.2528/PIER10071608

5. Wang, X.-H., B.-Z. Wang, and K. J. Chen, "Compact broadband dual-band bandpass Filters using slotted ground structures," Progress In Electromagnetics Research, Vol. 82, 151-166, 2008.
doi:10.2528/PIER08030101

6. Wen, C.-P., "Coplanar waveguide, a surface strip transmission line suitable for nonreciprocal gyromacnetic device applications," Microwave Symposium, G-MTT International, 110-115, 1969.

7. Wada, K. and I. Awai, "Heuristic models of half-wavelength resonator bandpass filter with attenuation poles," Electronics Letters, Vol. 35, No. 5, 401-402, Mar. 1999.
doi:10.1049/el:19990207

8. William, D. F. and S. E. Schwarz, "Design and performance of coplanar waveguide bandpass filters," IEEE Trans. on Microwave Theory and Tech., Vol. 31, No. 7, 558-566, Mar. 1983.
doi:10.1109/TMTT.1983.1131545

9. Sanada, A., H. Takehara, and I. Awai, "Design of the CPW in-line λ/4 stepped-impedance resonator bandpass filter," Asia-Pacific Microwave Conference Proceedings, APMC, Vol. 2, 633-636, 2001.

10. Lin, S.-C., T.-N. Kuo, Y.-S. Lin, and C.-H. Chen, "Novel coplanar-waveguide bandpass filters using loaded air-bridge enhanced capacitors and broadside-coupled transition structures for wideband spurious suppression," IEEE Trans. on Microwave Theory and Tech., Vol. 54, No. 8, 3359-3369, Aug. 2006.
doi:10.1109/TMTT.2006.879175

11. Chen, C.-F., T.-Y. Huang, and R.-B. Wu, "Design of microstrip bandpass filters with multi-order spurious-mode suppression," IEEE Trans. on Microwave Theory and Tech., Vol. 53, No. 12, 3788-3793, Dec. 2005.
doi:10.1109/TMTT.2005.859869

12. Kuo, J.-T. and E. Shih, "Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth," IEEE Trans. on Microwave Theory and Tech., Vol. 51, No. 5, 1554-1559, May 2003.
doi:10.1109/TMTT.2003.810138

13. Kim, I., N. Kingsley, M. Morton, R. Bairavasubramanian, J. Papapolymerou, M.-M. Tentzeris, and J.-G. Yook, "Fractal-shaped microstrip coupled-line bandpass filters for suppression of second harmonic," IEEE Trans. on Microwave Theory and Tech., Vol. 53, No. 9, 2943-2948, Sep. 2005.
doi:10.1109/TMTT.2005.854263

14. Luo, X., J.-G. Ma, and E.-P. Li, "Bandpass filter with wide stopband using broadside-coupled microstrip T-stub/DGS cell," Microwave and Optical Technology Letters, Vol. 53, No. 8, 1786-1789, Aug. 2011.
doi:10.1002/mop.26101

15. Wang, L. G. and L. Jin, "A quasi-elliptic microstrip bandpass filter using modified anti-parallel coupled-line," Progress In Electromagnetics Research, Vol. 138, 245-253, 2013.

16. Luo, X. and J.-G. Ma, "Compact slot-line bandpass filter using backside microstrip open-stubs and air-bridge structure for spurious suppression," Asia-Pacific Microwave Conference Proceedings, APMC, 882-885, 2009.

17. Hong, J.-S. and M.-J. Lancaster, "Couplings of microstrip square II open-loop resonators for cross-coupled planar microwave filters," IEEE Trans. on Microwave Theory and Tech., Vol. 44, No. 12, 2099-2109, Dec. 1996.
doi:10.1109/22.543968

18. Wu, Y.-L., C. Liao, and X.-Z. Xiong, "A dual-wideband bandpass filter based on E-shaped microstrip sir with improved upper-stopband performance," Progress In Electromagnetics Research, Vol. 108, 141-153, 2010.
doi:10.2528/PIER10071802

19. Kuo, J.-T., C.-Y. Fan, and S.-C. Tang, "Dual-wideband bandpass filters with extended stopband based on coupled-line and coupled three-line resonators," Progress In Electromagnetics Research, Vol. 124, 1-15, 2012.
doi:10.2528/PIER11120103

20. Mashhadi, M. and N. Komjani, "Design of dual-band bandpass filter with wide upper stopband using sir and GSIR structures," Progress In Electromagnetics Research, Vol. 32, 221-232, 2012.

21. Tiwary, A. K. and N. Gupta, "Design of compact coupled microstrip line band pass filter with improved stopband characteristics," Progress In Electromagnetics Research, Vol. 24, 97-109, 2011.

22. Lin, W.-J., C.-S. Chang, and J.-Y. Li, "Improved compact broadband bandpass filter using branch stubs co-via structure with wide stopband characteristics," Progress In Electromagnetics Research, Vol. 5, 45-55, 2008.

23. Lin, S.-C. and C.-Y. Yeh, "Stopband-extented balanced filters using both λ/4 and λ/2 sirs with common-mode suppression and improved passband selectivity," Progress In Electromagnetics Research, Vol. 128, 215-228, 2012.

24. Kim, C.-S., D.-H. Kim, I.-S. Song, K. M. K. H. Leong, T. Itoh, and D. Ahn, "A design of a ring bandpass filters with wide rejection band using DGS and spur-line coupling structures," IEEE MTT-S International Microwave Symposium, Vol. 128, 2183-2186, 2005.

25. Kuo, J.-T. and E. Shih, "Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth," IEEE Trans. on Microwave Theory and Tech., Vol. 51, 1554-1559, 2003.

26. Chen, C.-F., T.-Y. Huang, and R.-B. Wu, "Design of microstrip bandpass filters with multiorder spurious-mode suppression," IEEE Trans. on Microwave Theory and Tech., Vol. 53, 3788-3793, 2005.
doi:10.1109/TMTT.2005.859869