1. Wikner, D. A., "Progress in millimeter-wave imaging," Proc. SPIE, Vol. 7936, 79360D, Feb. 2011.
doi:10.1117/12.880188 Google Scholar
2. Kolinko, V. G., S. Lin, A. Shek, W. Manning, C. Martin, M. Hall, O. Kirsten, J. Moore, and D. A. Wikner, "A passive millimeterwave imaging system for concealed weapons and explosives detection," Proc. SPIE, Vol. 5781, 85-92, May 2005.
doi:10.1117/12.606661 Google Scholar
3. Lovberg, J. A., C. Martin, and V. G. Kolinko, "Video-rate passive millimeter-wave imaging using phased arrays," Proc. MWSYM, 1689-1692, Jun. 2007. Google Scholar
4. Huang, J. and T. Gan, "A novel millimeter wave synthetic aperture radiometer passive imaging system," Proc. ICMMT, 414-417, Aug. 2004. Google Scholar
5. Zheng, C., X. Yao, A. Hu, and J. Miao, "A passive millimeter wave imager used for concealed weapon detection," Progress In Electromagnetics Research B, Vol. 46, 379-397, 2013. Google Scholar
6. Zheng, C., X. Yao, A. Hu, and J. Miao, "Initial results of a passive millimeter-wave imager used for concealed weapon detection BHU-2D-U," Progress In Electromagnetics Research C, Vol. 43, 151-163, 2013. Google Scholar
7. Laursen, B. and N. Skou, "Synthetic aperture radiometry evaluated by a two-channel demonstration model," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 3, 822-832, May 1998.
doi:10.1109/36.673675 Google Scholar
8. Duff, N., I. Corbella, and F. Torres, "Advantages and drawbacks of near field characterization of large aperture synthesis radiometers," Proc IEEE Microrad, 2004. Google Scholar
9. Tanner, A. B., B. H. Lambrigsten, T. M. Gaier, and F. Torres, "Near field characterization of the GeoSTAR demonstrator," Proc. IGARSS, 2529-2532, Jul. 2006. Google Scholar
10. Tanner, A. B. and C. T. Swift, "Calibration of a synthetic aperture radiometer," IEEE Trans. Geosci. Remote Sens., Vol. 31, 257-267, 1993.
doi:10.1109/36.210465 Google Scholar
11. Zhang, C., J. Wu, H. Liu, and J. Yan, "Imaging algorithm for synthetic aperture interferometric radiometer in near ¯fild," Science China Technological Sciences, Vol. 54, 2224-2231, 2011.
doi:10.1007/s11431-011-4403-3 Google Scholar
12. Anterrieu, E., "A resolving matrix approach for synthetic aperture imaging radiometers," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 8, 1649-1656, Aug. 2004.
doi:10.1109/TGRS.2004.830940 Google Scholar
13. Bertero, M. and P. Boccacci, Introduction to Inverse Problems in Imaging, Instit. Phys., 1998.
doi:10.1887/0750304359
14. Peichel, M., H. Suess, and M. Suess, "Microwave imaging of the brightness temperature distribution of extended areas in the near and far ¯eld using two-dimensional aperture synthesis with high spatial resolution," Radio Science, Vol. 33, No. 3, 781-801, 1998.
doi:10.1029/97RS02398 Google Scholar
15. Tikhonov, A. and V. Y. Arseninn, Solution of Ill-posed Problems, John Wiley & Sons, 1977.
16. Golub, G. H., M. Heath, and G. Wahba, "Generalized cross validation as a method for choosing a good ridge parameter," Technometrics, Vol. 21, 215-223, 1979.
doi:10.1080/00401706.1979.10489751 Google Scholar
17. Ruf, C. S., C. T. Swift, A. B. Tanner, and D. M. Le Vine, "Interferometric synthetic aperture microwave radiometry for the remote sensing of the earth," IEEE Trans. Geosci. Remote Sens., Vol. 26, 597-611, 1988.
doi:10.1109/36.7685 Google Scholar
18. Hansen, C., "The discrete Picard condition for discrete ill-posed problems," BIT Numerical Mathematics, Vol. 30, No. 4, 658-672, 1990.
doi:10.1007/BF01933214 Google Scholar