Vol. 45
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-11-20
Triode Magnetron Injection Gun for 132 GHz Gyrotron for 200 MHz Dnp-NMR Application
By
Progress In Electromagnetics Research C, Vol. 45, 191-201, 2013
Abstract
A 132 GHz gyrotron, operating at fundamental harmonic, is designed for the 200 MHz DNP-NMR experiment. In this article, the design of high quality electron beam source is presented. 2.5 dimensional code EGUN and 3 dimensional code CST-Particle Studio are used in the design and optimization of electron gun. The design of electron beam source is performed for a band of magnetic field values at the emitter surface and cavity center which is necessary for the frequency tunabilty of 2-3 GHz needed in DNP/NMR experiments. The results confirm the axial and transverse velocity spreads around 1% and 2.2% and a pitch factor of 1.5. The parametric analyses are also performed for the various electrical parameters such as emitter voltage, anode voltage, emitter magnetic field, etc.
Citation
Nitin Kumar, Udaybir Singh, and Ashok Kumar Sinha, "Triode Magnetron Injection Gun for 132 GHz Gyrotron for 200 MHz Dnp-NMR Application," Progress In Electromagnetics Research C, Vol. 45, 191-201, 2013.
doi:10.2528/PIERC13103103
References

1. Thumm, M., "Progress in gyrotron development," Fusion Engineering and Design, Vol. 66--68, 69-90, 2003.
doi:10.1016/S0920-3796(03)00132-7

2. Thumm, M., "State-of-the-art of High Power Gyro-devices and Free Electron Masers ," FZK, KIT, 2012.

3. Gaponov, A. V., M. I. Petelin, and V. K. Yulpatov, "The induced radiation of excited classical oscillators and its use in high frequency electronics ," Radiophys. Quantum Electron., Vol. 10, 794-813, 1967.
doi:10.1007/BF01031607

4. Flyagin, V. A., A. V. Gaponov, I. Petelin, and V. K. Yulpatov, "The gyrotron," IEEE Trans. on Microwave Theory and Tech. , Vol. 25, 514-521, 1977.
doi:10.1109/TMTT.1977.1129149

5. Chu, K. R., "The electron cyclotron maser --- Relativity in action," Review of Modern Physics, Vol. 76, 489-540, 2004.
doi:10.1103/RevModPhys.76.489

6. Kumar, N., U. Singh, T. P. Singh, and A. K. Sinha, "A review on the applications of high power, high frequency microwave source --- Gyrotron," J. of Fusion Energy, Vol. 30, 257-276, 2011.
doi:10.1007/s10894-010-9373-0

7. Thumm, M., "Novel applications of millimeter and submillimeter wave gyro-devices," Int. J. of Infrared, Millimeter and Terahertz Wave, Vol. 22, 377-386, 2001.
doi:10.1023/A:1010799620273

8. Nanni, E. A., A. B. Barnes, R. G. Griffin, and R. J. Temkin, "THz dynamic nuclear polarization NMR," IEEE Tr. Terahertz Science and Technology, Vol. 1, 145-163, 2011.
doi:10.1109/TTHZ.2011.2159546

9. Bratman, V., M. Glyavin, T. Idehara, Y. Kalynov, A. Luchinin, V. Manuilov, S. Mitsudo, I. Ogawa, T. Saito, Y. I. Tatematsu, and V. Zapevalo, "Review of subterahertz and terahertz gyrodevices at IAP RAS and FIR FU ," IEEE Trans. on Plasma Sci., Vol. 37, 36-43, 2009.
doi:10.1109/TPS.2008.2004787

10. Maly, T., G. T. Debelouchina, V. S. Bajaj, K. N. Hu, C. G. Joo, M. L. Mak-Jurkauskas, J. R. Sirigiri, P. C. A. V. D. Wel, and J. Herzfeld, "Dynamic nuclear polarization at high magnetic fields," J. Chem. Physics, Vol. 128, 052211, 2008.
doi:10.1063/1.2833582

11. Bajaj, V. S., C. T. Farrar, M. K. Hornstein, I. Mastovsky, J. Vieregg, J. Bryant, B. El ena, K. E. Kreischer, R. J. Temkin, and R. G. Griffin , "Dynamic nuclear polarization at 9T using a novel 250 GHz gyrotron microwave source," J. Magnetic Resonance, Vol. 160, 85-90, 2003.
doi:10.1016/S1090-7807(02)00192-1

12. Kartikeyan, M. V., E. Borie, and M. K. A. Thumm, Gyrotrons-high Power Microwave and Millimeter Wave Technology, Springer-Verlag, Berlin, Germany, 2004.

13. Edgcombe, C. J., "Gyrotron Oscillators: Their Principles and Practice," Taylor & Francis, 1993.

14. EGUN, (Hermannsfeldt, W. B., Stanford Linear Accelerator Center) , Stanford University Report SLAC-226, 1979.

15. Singh, U., A. Bera, R. R. Rao, and A. K. Sinha, "Synthesized parameters of MIG for 200 kW, 42 GHz gyrotron," J. of Infrared, Millimeter, and Terahertz Waves, Vol. 31, 533-541, 2010.

16. Baird, J. M. and W. Lawson, "Magnetron injection gun (MIG) design for gyrotron applications," Int. J. Electronics, Vol. 61, 953-967, 1986.
doi:10.1080/00207218608920932

17. Lawson, W., "MIG scaling," IEEE Trans. on Plasma Sci., Vol. 16, 290-295, 1988.
doi:10.1109/27.3827

18. Tsimring, S. E., "Gyrotron electron beams: Velocity and energy spread and beam instabilities," Int. J. of Infrared, Millimeter and Terahertz Wave, Vol. 22, 1433-1468, 2001.
doi:10.1023/A:1015034506088

19. "User Manual: 2010 Version of CST, CST Particle Studio GmbH, Darmstadt,".
doi:10.1023/A:1015034506088

20. Singh, U., A. Bera, N. Kumar, L. P. Purohit, and A. K. Sinha, "Three-dimensional simulation of MIG for 42-GHz 200-kW gyrotron," IEEE Trans. on Plasma Sci., Vol. 38, 1546-1550, 2010.
doi:10.1109/TPS.2010.2049748