1. Thumm, M., "Progress in gyrotron development," Fusion Engineering and Design, Vol. 66--68, 69-90, 2003.
doi:10.1016/S0920-3796(03)00132-7 Google Scholar
2. Thumm, M., "State-of-the-art of High Power Gyro-devices and Free Electron Masers ," FZK, KIT, 2012. Google Scholar
3. Gaponov, A. V., M. I. Petelin, and V. K. Yulpatov, "The induced radiation of excited classical oscillators and its use in high frequency electronics ," Radiophys. Quantum Electron., Vol. 10, 794-813, 1967.
doi:10.1007/BF01031607 Google Scholar
4. Flyagin, V. A., A. V. Gaponov, I. Petelin, and V. K. Yulpatov, "The gyrotron," IEEE Trans. on Microwave Theory and Tech. , Vol. 25, 514-521, 1977.
doi:10.1109/TMTT.1977.1129149 Google Scholar
5. Chu, K. R., "The electron cyclotron maser --- Relativity in action," Review of Modern Physics, Vol. 76, 489-540, 2004.
doi:10.1103/RevModPhys.76.489 Google Scholar
6. Kumar, N., U. Singh, T. P. Singh, and A. K. Sinha, "A review on the applications of high power, high frequency microwave source --- Gyrotron," J. of Fusion Energy, Vol. 30, 257-276, 2011.
doi:10.1007/s10894-010-9373-0 Google Scholar
7. Thumm, M., "Novel applications of millimeter and submillimeter wave gyro-devices," Int. J. of Infrared, Millimeter and Terahertz Wave, Vol. 22, 377-386, 2001.
doi:10.1023/A:1010799620273 Google Scholar
8. Nanni, E. A., A. B. Barnes, R. G. Griffin, and R. J. Temkin, "THz dynamic nuclear polarization NMR," IEEE Tr. Terahertz Science and Technology, Vol. 1, 145-163, 2011.
doi:10.1109/TTHZ.2011.2159546 Google Scholar
9. Bratman, V., M. Glyavin, T. Idehara, Y. Kalynov, A. Luchinin, V. Manuilov, S. Mitsudo, I. Ogawa, T. Saito, Y. I. Tatematsu, and V. Zapevalo, "Review of subterahertz and terahertz gyrodevices at IAP RAS and FIR FU ," IEEE Trans. on Plasma Sci., Vol. 37, 36-43, 2009.
doi:10.1109/TPS.2008.2004787 Google Scholar
10. Maly, T., G. T. Debelouchina, V. S. Bajaj, K. N. Hu, C. G. Joo, M. L. Mak-Jurkauskas, J. R. Sirigiri, P. C. A. V. D. Wel, and J. Herzfeld, "Dynamic nuclear polarization at high magnetic fields," J. Chem. Physics, Vol. 128, 052211, 2008.
doi:10.1063/1.2833582 Google Scholar
11. Bajaj, V. S., C. T. Farrar, M. K. Hornstein, I. Mastovsky, J. Vieregg, J. Bryant, B. El ena, K. E. Kreischer, R. J. Temkin, and R. G. Griffin , "Dynamic nuclear polarization at 9T using a novel 250 GHz gyrotron microwave source," J. Magnetic Resonance, Vol. 160, 85-90, 2003.
doi:10.1016/S1090-7807(02)00192-1 Google Scholar
12. Kartikeyan, M. V., E. Borie, and M. K. A. Thumm, Gyrotrons-high Power Microwave and Millimeter Wave Technology, Springer-Verlag, 2004.
13. Edgcombe, C. J., "Gyrotron Oscillators: Their Principles and Practice," Taylor & Francis, 1993. Google Scholar
14. EGUN, (Hermannsfeldt, W. B., Stanford Linear Accelerator Center) , Stanford University Report SLAC-226, 1979.
15. Singh, U., A. Bera, R. R. Rao, and A. K. Sinha, "Synthesized parameters of MIG for 200 kW, 42 GHz gyrotron," J. of Infrared, Millimeter, and Terahertz Waves, Vol. 31, 533-541, 2010. Google Scholar
16. Baird, J. M. and W. Lawson, "Magnetron injection gun (MIG) design for gyrotron applications," Int. J. Electronics, Vol. 61, 953-967, 1986.
doi:10.1080/00207218608920932 Google Scholar
17. Lawson, W., "MIG scaling," IEEE Trans. on Plasma Sci., Vol. 16, 290-295, 1988.
doi:10.1109/27.3827 Google Scholar
18. Tsimring, S. E., "Gyrotron electron beams: Velocity and energy spread and beam instabilities," Int. J. of Infrared, Millimeter and Terahertz Wave, Vol. 22, 1433-1468, 2001.
doi:10.1023/A:1015034506088 Google Scholar
19. "User Manual: 2010 Version of CST, CST Particle Studio GmbH, Darmstadt,".
doi:10.1023/A:1015034506088 Google Scholar
20. Singh, U., A. Bera, N. Kumar, L. P. Purohit, and A. K. Sinha, "Three-dimensional simulation of MIG for 42-GHz 200-kW gyrotron," IEEE Trans. on Plasma Sci., Vol. 38, 1546-1550, 2010.
doi:10.1109/TPS.2010.2049748 Google Scholar