Vol. 35
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-03-14
A Geometrical Model for Arrayed Waveguide Grating Based Optical Multiplexer/Demultiplexer
By
Progress In Electromagnetics Research M, Vol. 35, 87-96, 2014
Abstract
This paper mathematically models the operation of Arrayed Waveguide Grating (AWG) based multiplexer (MUX) and demultiplexer (DEMUX) used in optical networks. In WDM networks, the optical MUX and DEMUX play a crucial role of managing the aggregation and segregation of wavelengths for networking applications. A simple and intuitive model of AWG based MUX design is discussed in this work. This model assumes that the device is linear, in which the principle of superposition is valid, and the primary emphasis is given to the optical power gain of the individual wavelengths. By using this model, one can exactly estimate the individual and overall power associated with each of the multiplexed wavelengths. The developed model was evaluated with experimental results using AWG based multiplexers. The experiments were repeated for different test cases with various power input levels and multiplexer configurations. It was found that the developed model provided a good approximation to the actual AWG mux/demux.
Citation
Dasan Meena Orappanpara Soman Sunishkumar Devendra Chandra Pande Srinivas Talabattula Vadake Kadangote Jayasree Francis Fredy Kundil Thodiyil Sarath Elambilayi Dipin , "A Geometrical Model for Arrayed Waveguide Grating Based Optical Multiplexer/Demultiplexer," Progress In Electromagnetics Research M, Vol. 35, 87-96, 2014.
doi:10.2528/PIERM14011906
http://www.jpier.org/PIERM/pier.php?paper=14011906
References

1. Van Dam, C., "InP-based polarisation independent wavelength demultiplexers,", 1997.
doi:10.1016/j.optcom.2006.09.057

2. Sun, F. G., G. Z. Xiao, Z. Y. Zhang, and Z. G. Lu, "Modeling of arrayed waveguide grating for wavelength interrogation application," Optics Communications, Vol. 271, 105-108, 2007.
doi:10.1109/2944.577370

3. Smit, M. K. and C. Van Dam, "PHASAR-based WDM-devices: Principles, design and applications," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 2, No. 2, 236-250, Jun. 1996.
doi:10.1049/el:19880260

4. Smit, M. K., "New focusing and dispersive planar component based on an optical phased array," Electronics Letters, Vol. 24, No. 7, 385-386, 1988.
doi:10.1109/50.45938

5. Vellekoop, A. R. and M. K. Smit, "A small-size polarization splitter based on a planar optical phased array," Journal of Lightwave Technology, Vol. 8, No. 1, 118-124, 1990.
doi:10.1049/el:19900058

6. Takahashi, H., S. Suzuki, K. Kato, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution," Electronics Letters, Vol. 26, No. 2, 87-88, Jan. 18, 1990, doi: 10.1049/el:19900058.
doi:10.1109/68.93254

7. Dragone, C., C. A. Edwards, and R. C. Kistler, "Integrated optics N*N multiplexer on silicon," IEEE Photonics Technology Letters, Vol. 3, No. 10, 896-899, Oct. 1991.
doi:10.1109/68.166958

8. Zirngibl, M., C. Dragone, and C. H. Joyner, "Demonstration of a 15*15 arrayed waveguide multiplexer on InP," IEEE Photonics Technology Letters, Vol. 4, No. 11, 1250-1253, Nov. 1992.
doi:10.1364/OL.31.000459

9. Takiguchi, K., K. Okamoto, and A. Sugita, "Arrayed-waveguide grating with uniform loss properties over the entire range of wavelength channels," Optics Letters, Vol. 31, No. 4, 459-461, Optical Society of America NTT Photonics Laboratories, 2006.

10. Liu, Z. and J. Li, "Modeling and design of arrayed waveguide gratings," 2nd International Asia Conference on Informatics in Control, Automation and Robotics, 2010.
doi:10.1109/JLT.2002.1018803

11. Roudas, I., N. Antoniades, T. Otani, and T. E. Stern, "Accurate modeling of optical multiplexer/demultiplexer concatenation in transparent multiwavelength optical networks," Journal of Lightwave Technology, Vol. 20, No. 6, 921-936, Jun. 2002.

12. Ab-Rahman, M. S., M. F. Ibrahim, A. A. A. Rahni, S. Shaari, and K. Jumari, "Optical cross add and drop multiplexer: An analytical approach," The Fourth Advanced International Conference on Telecommunications, 420-427, 2008, DOI 10.1109/AICT.2008.44.